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Abstract

We introduce the notions of M -pjective modules. We show that rel-
ative pjectivity is necessary and sufficient for a direct sum of two lifting
modules to be lifting. We also introduce the new concept of generalized
lifting modules, and give some properties of such modules in analogy
with the know properties for lifting modules.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity
and M will be unital right R-module and S = End(M) is the ring of R-
endomorphisms of M . Submodules of M will be right R-submodules, while
one sided ideals for these rings will be right ideals for R and right ideal for S,
respectively. We reserve the term ”ideal”for the two-sided ideals in both rings.
The notation N ≤⊕ M denotes that N is a direct summand in M ; N � M
means that N is small in M (i.e. ∀L � M, L + N �= M). A module N is said
to be small if N � L, for some module L. For N, L ≤ M, N is supplement of
L in M if N + L = M with N ∩ L � N . Following [10], a module M is called
supplemented if every submodule of M has a supplement in M . On the other
hand, the module M is amply supplemented if, for any submodules A, B of M
with M = A + B there exists a supplement P of A in M such that P ≤ B.
Module M is called a weakly supplemented module if for each submodule A of
M there exists a submodule B of M such that M = A + B and A ∩ B � M .
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M is called ⊕-supplemented if every submodule of M has a supplement that is
a direct summand of M .

Let M be a module and B ≤ A ≤ M . If A/B � M/B, then B is called a
cosmall submodule of A in M . A submodule A of M is called coclosed if A has
no proper cosmall submodule.

A module M is lifting if for every submodule A of M , there is a decompo-
sition M = M1 ⊕M2 such that M1 ≤ A and M2 ∩A � M . By [7, Proposition
4.8], M is lifting if and only if M is amply supplemented and every supplement
submodule of M is a direct summand.

Generalized relative injectivity was renamed as ojective by Mohamed and
Muller (in [8]) in honour of Oshiro. They also dualised the consept of ojective
modules in two ways, namely to cojective and ∗cojective modules(see [9]).

Here we introduce the concept of M -pjectivity, which is a generalization of
M−∗cojectivity.

A module N is M -pjective if every supplement of M in M ⊕ N is a direct
summand. If N is M -pjective and M is N -pjective, we say that N and M
are relatively pjective. The problem of finding a satisfactory necessary and
sufficient condition for a direct sum of lifting modules to be lifting is still
open. We show that relative pjectivity is necessary and sufficient for a direct
sum of two lifting modules to be lifting. We also introduced the concept of
generalized lifting modules, and give sum properties of such modules in analogy
with properties for lifting modules.

2. M-Pjective Modules

Definition 1 Let M = A⊕B. Then B is called A-pjective if every supplement
C of A in M is a direct summand.

Lemma 2.1 Let A and B be submodules of a module M with A + B = M .
Then A is a supplement of B in M if and only if A is a coclosed submodule of
M and A ∩ B � M .

Proof It is easily checked by [6, Lemma 1.1]. �

Lemma 2.2 Let M = M1 ⊕M2 and N, L ≤ M1. If N is a supplement of L in
M1, then:

(1) N ⊕ M2 is a supplement of L in M .
(2) N is a supplement of L ⊕ M2 in M .

Proof (1) [3, Lemma 2.2]
(2) Let N be a supplement of L in M1. Then M1 = N +L and N is minimal

with this property. It is easy to see that M = N +(L⊕M2). Let X ≤ N ≤ M1
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such that M = X + (L ⊕ M2). Hence X + L = M1. Since N is a supplement
of L in M1 we will have X = N . �

Lemma 2.3 Let K ≤ L ≤ M . If K is coclosed in M , then K is coclosed in L
and the converse is true if L is coclosed in M .

Proof [4, Lemma 2.6]. �

Lemma 2.4 Let M = A ⊕ B, where B is A-pjective. If A = A1 ⊕ A2 and
B = B1 ⊕ B2. Then (for i, j = 1, 2);

(1)Bi is A-pjective;
(2)B is Aj-pjective;
(3)Bi is Aj-pjective.

Proof For (1), write N = A ⊕ B1 , and let X be a supplement of A in N .
By Lemma 2.2, X ⊕ B2 is a supplement of A in M . As B is A-pjective,
M = X ⊕ B2 ⊕ K for some K ≤ M . Hence N = X ⊕ (N ∩ (B2 ∩ K)).

For (2), write L = A1 ⊕ B, and let Y be a supplement of A1 in L. By
[6, Lemma 1.1], it is easy to see that A1 is a supplement of Y in L. Then A
is a supplement of Y in M by Lemma 2.2(1). Again by [6, Lemma 1.1] Y is
supplement of A in M . As B is A-pjective, M = Y ⊕ K for some K ≤ M .
Hence L = Y ⊕ (K ∩ L).

(3) Follows from (1) and (2). �

Definition 2 A module M is called an absolute relative pjective module (for
short ARPJ-module) if Mi is Mj -pjective(i �= j); whenever M = M1 ⊕ M2.

Clearly every lifting module is an ARPJ-module and any indecomposable
module is obviously an ARPJ-module, which is not lifting. The following
Proposition gives the relation between lifting modules and ARPJ-modules.

Proposition 2.5 The following are equivalent for a module M :
(1) M is a lifting module;
(2) M is an amply supplemented, ⊕-supplemented and ARPJ-module.

Proof (1)⇒ (2) It is trivially.
(2) ⇒ (1) Let C be a coclosed submodule of M . Since M is ⊕-supplemented,

C has a supplement in M which is a direct summand; i.e. M has a decom-
position M = M1 ⊕ M2, where M2 ∩ C � M . Since M is a ARPJ-module,
M2 is M1-pjective. From Lemma 2.1, C is a supplement of M2 in M and so
C ≤⊕ M . Therefore M is lifting. �

Proposition 2.6 Let M = M1 ⊕ M2. If M1 is M2-projective, then M1 is
M2-pjective.

Proof It is easily checked by [3, Proposition 3.3] �
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Let M be a module. Recall that M is called a (D3)-module, if M = A + B
where A and B are direct summands of M , then A ∩ B is a direct summand
of M .

Let M1, M2 be modules. Following [6], the module M1 is small M2-projective
if every homomorphism f : M1 → M2/A, where A is a submodule of M2 and
Imf � M2/A, can be lifted to a homomorphism φ : M1 → M2.

Theorem 2.7 Let M = M1 ⊕ M2 be an amply supplemented (D3)-module . If
M1 is M2-pjective, then M1 is M2-projective.

Proof Let N be a submodule of M such that (N + M1)/N � M/N . Then
M = N + M2. Since M is amply supplemented there exists a submodule N ′

of M such that N ′ ≤ N, M = N ′ + M2 and N ′ ∩ M2 � N ′, that is, N ′

is a supplement of M2 in M . Since M1 is M2-pjective, M = N ′ ⊕ K for
some K ≤ M . Since M is (D3), N ′ ∩ M2, is a direct summand of M , and so
M = N ′ ⊕ M2. By [6, Lemma 2.4], M1 is small M2-projective. Hence by [2,
Proposition 14.17], M1 is M2-projective. �

Lemma 2.8 Let M = A ⊕B where A is B-pjective and B is lifting. If X is a
coclosed submodule of M with M = X + B, then X is a summand of M .

Proof Let M = X + B. Since B is lifting, there exists a direct summand
B1 of B such that B = B1 ⊕ B2 and B1 ≤ X ∩ B, X ∩ B2 � B2 . Now
M = A ⊕ B1 ⊕ B2. Write N = A ⊕ B2. Then X = B1 + X1, where X1 =
X ∩ N . Hence M = X + B = X1 + B1 + B2, and so N = X1 + B2. Clearly
X1 ∩ B2 = X ∩ B2 � B2. Then B2 is a supplement of X1 in N . Now X1 is
coclosed submodule of X, and X is coclosed submodule of M . It follows by
Lemma 2.3 that X1 is coclosed in N . It is easy to see that X1 is a supplement
of B2 in N . Now A is B2-pjective, by Lemma 2.4. Thus we get that X1 is a
direct summand of N , and therefore is a direct summand of M . �

The following is a necessary and sufficient condition of a direct sum of two
lifting modules to be lifting.

Theorem 2.9 Let M = M1 ⊕M2 be an amply supplemented module. Then M
is lifting if and only if the Mi is lifting, and is Mj-pjective, i �= j(= 1, 2).

Proof It follows from Lemma 2.8, and [6, Theorem 2 .1]. �

3. Generalized Lifting Modules

Definition 3 A module M is called a generalized lifting module(for short a
GL-module) if the following condition satisfied: If M = M1 ⊕M2 and A ≤ M ,
then there exist Ci ≤⊕ Mi(i = 1, 2) such that C1 ⊕C2 is a supplement of A in
M .
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Observe that from the definition of GL-modules, every GL-module is ⊕-
supplemented module.

In the following we are going to show that every lifting module is a GL-
module, and also give the relations between ⊕-supplemented modules and GL-
modules.

Theorem 3.1 ( cf. [5]) For any ring R, any finite direct sum of ⊕-supplemented
R-modules is ⊕-supplemented.

Remark 3.2 In the proof of the Theorem 3.1 we obtain that for any submodule
L of M = M1 ⊕ M2, there exists a supplement K ⊕ H of L, where K ≤⊕ M1

and H ≤⊕ M2. Therefore we have the following Corollary.

Corollary 3.3 The following are equivalent for a module M :
(1) M is a GL-module.
(2) Every direct summand of M is a ⊕-supplemented module.

Proof (1) ⇒ (2) Let M = M1⊕M2 and A ≤ M1. Since M is GL-module, there
exist Ci ≤⊕ Mi(i = 1, 2), such that C1⊕C2 is supplement of A in M . Therefore
A +(C1 ⊕C2) = M , hence A +C1 = M1. Since C1 ∩A ≤ (C1 ⊕C2)∩A � M ,
C1 ∩ A � C1. Therefore M1 is ⊕-supplemented.

(2) ⇒ (1) It is easily checked by Remark 3.2. �

Corollary 3.4 Let M = ⊕n
i=1Mi be a finite direct sum of modules. If each Mi

is ⊕-supplemented, then M is GL-module.

Corollary 3.5 Direct summands of a GL-module are GL-modules.

Proof It is an immediate consequence of Corollary 3.3. �

Corollary 3.6 Every lifting module is a GL-module.

Proof Since every direct summand of lifting module is lifting, hence is ⊕-
supplemented. �

Example 3.7 Let p be any prime integer. Z-Module Z/pZ ⊕ Z/p3Z is not
lifting(see [7, Proposition A.7]), but is GL-module.

We say that a module M has hollow dimension n, if there exists a small
epimorphism from M to a direct sum of n hollow modules.

Corollary 3.8 Let M be ⊕-supplemented and finite hollow dimensional module.
Then M is a GL-module.

Proof We prove by induction on the hollow dimension of M . It is clear that ev-
ery hollow module is a GL-module. Now let M be a module of hollow dimension
n. Since every nonzero proper summand submodule of M has hollow dimen-
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sion less than n, by induction it is a GL-module; and hence is ⊕-supplemented.
Therefore by Corollary 3.3 M is a GL-module �

The following implications are now clear for a module M :
Lifting module ⇒ GL-module ⇒ ⊕-Supplemented module.

Corollary 3.9 The following are equivalent for a module M = ⊕n
i=1Mi:

(1) The Mi(i = 1, 2, ..., n) is ⊕-supplemented;
(2) Each submodule of M has a supplement in M of the form ⊕n

i=1Ni, where
Ni ≤⊕ Mi(i = 1, 2, ..., n).

Proof (1) ⇒ (2) By induction on the number n of the summands Mi of M ,
for n = 1 it is clear. If n = 2, it follows by Remark 3.2.

(2) ⇒ (1) Let L ≤ Mi ≤ M . By assumption L has a supplement in M of the
form ⊕n

i=1Ni, where Ni ≤⊕ Mi(i = 1, 2, ..., n) . Then L+⊕n
i=1Ni = M . Hence

for each i, L+Ni = Mi, L∩Ni ≤ L∩ (⊕n
i=1Ni) � M . Therefore L∩Ni � Mi.

Hence Mi is ⊕-supplemented. �

Proposition 3.10 Let M be a ⊕-supplemented module. Then it has a de-
composition M = M1 ⊕ M2, where M2 is a cosmall submodule of Rad(M) in
M .

Proof Since M is ⊕-supplemented, there exists a decomposition M = M1⊕M2,
such that Rad(M) ∩ M1 � M and Rad(M) + M1 = M . We have Rad(M) =
Rad(M1) ⊕ Rad(M2). Then M = M1 ⊕ Rad(M2). Hence M2 = Rad(M2),
therefore Rad(M) = Rad(M1) ⊕ M2. Now we show that Rad(M)/M2 �
M/M2. Let Rad(M)/M2 + L/M2 = M/M2 for some L ⊇ M2. Then M =
Rad(M) + L = (Rad(M1) ⊕ M2) + L = Rad(M1) + L. Since Rad(M1) =
Rad(M) ∩ M1 � M , hence L = M . �

Proposition 3.11 If M is a GL-module with finite hollow dimension, then M
is a finite direct sum of hollow submodules.

Proof Since M has a finite hollow dimension, then M is a direct sum of in-
decomposable submodules. By Corollary 3.5, the indecomposable summand of
M are GL-modules, and hence, by [5, Lemma 2.14] are hollow modules. �

Remark 3.12 Consider a direct sum of hollow modules, which contains an
indecomposable and not hollow summand submodule. This module is ⊕-
supplemented [5, Corollary 1.6], which is not a GL-module (by [5, Lemma 2.14]
and Corollary 3.3). This also shows that direct summands of ⊕-supplemented
modules need not be ⊕-supplemented.

Lemma 3.13 Let A ≤ B ≤⊕ M . If C is a supplement of A in M, then C ∩B
is a supplement of A in B.

Proof Since C is supplement of A in M , C + A = M and C ∩ A � M . Then
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(C ∩ B) + A = B, and C ∩ B ∩ A = C ∩ A � M . �

Theorem 3.14 If M is a ⊕-supplemented, and satisfies in this condition that
for every two direct summands N1 and N2 of M such that N1∩N2 is coclosed in
M , implies that N1 ∩N2 is a direct summand of M . Then M is a GL-module.

Proof Let B ≤⊕ M and A ≤ B. Since M is a ⊕-supplemented, there exists
a supplement K of A in M such that K ≤⊕ M . By Lemma 3.13, K ∩ B is a
supplement of A in B; and hence a coclosed submodule of B. By assumption,
K ∩ B ≤⊕ M . This shows that any summand B of M is ⊕-supplemented.
Therefore M is GL-module. �
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