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Abstract

This paper deals with the relation between geometric lattices and
independence spaces. Finally, it gets a bijective correspondence between
geometric lattices and simple independence spaces. This result makes
the study of geometric lattices turn into the research of independence
spaces. Moreover, it generalizes the ways of study on geometric lattices,
and at the same time, on independence spaces.

1 Introduction and Preliminaries

The relationship between a finite simple matroid and a finite geometric lattice
has been pointed out in [1,Chapter 3]. It was shown in [3] that a finite height
geometric lattice corresponds to a simple matroid of arbitrary cardinality, and
vice versa. It arises a question how about the relation between a general geo-
metric lattice and a class of infinite matroids? It has been shown in [2] that an
independence space is a class of more frequently studied classes of infinite ma-
troids. Some methods have been presented in [6] to generate an independence
space with graph theory and some properties of independence spaces can be
found in [7]. In this paper, we consider independence spaces as the classes of
infinite matroids. In addition, following [1,p.388,Theorem 5], the closed sets of
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an independence space form a complete semimodular lattice under set inclu-
sion, and each of its elements is a join of atoms. Besides, Welsh said in [1,p.388]
that in general, we no longer have a geometric lattice for the closed sets of an
independence space since even when it is infinite, a geometric lattice is defined
to have only finite dimension. However, this paper will use another way to ob-
tain that a geometric lattice corresponds to a simple independence space, and
vice versa. This result completely deals with the relation between a geometric
lattice and an independence space. This correspondence presents a real way to
study on geometric lattices by matroid theory. The related examples can be
found in Section 2.

First of all, we summarize some facts of independence spaces and geometric
lattices that are needed in the present work. In what follows, we assume that
S is some arbitrary–possibly infinite–set. Y ⊂⊂ X indicates that Y is a finite
subset of X. The following definition is taken from [2, p.74] and [1, p.387, 388].

Definition 1 (1) An independence space M(S) is a set S together with I ⊆
P(S)(called independent sets) such that the following conditions:
(i1) I �= ∅;
(i2) If A ∈ I and B ⊆ A, then B ∈ I;
(i3) If A, B ∈ I and |A|, |B| < ∞ with |A| = |B| + 1, then ∃a ∈ A \ B fits
B ∪ a ∈ I;
(i4) If A ⊆ S and every finite subset of A is a member of I, then A ∈ I.

A subset X of S is dependent if X /∈ I. A circuit of M(S) is a minimal
dependent set. A basis of M(S) is a maximal independent set.

(2) The closure operator σ of M(S) is defined by x ∈ σ(A) if x ∈ A or if
there exists a circuit C with x ∈ C ⊆ A ∪ x. A set X is closed or a flat if
σ(X) = X.

Lemma 1 (1) A function σ : 2S → 2S is the closure operator of an indepen-
dence space on S if and only if for X, Y subsets of S, and x, y ∈ S;
(s1) A ⊆ σ(A);
(s2) If A, B are subsets of S, and A ⊆ B, then σ(A) ⊆ σ(B);
(s3) For X ⊆ S, σ(X) = σ(σ(X));
(s4) If y /∈ σ(X) and y ∈ σ(X ∪ x), then x ∈ σ(X ∪ y);
(s5) If a ∈ σ(X) for some X ⊆ S, then a ∈ σ(Xf ) for some Xf ⊂⊂ X.

(2) All the circuits of an independence space are finite. If (S, I) is an
independence space, T ⊆ X ⊆ S and T ∈ I, then there is a maximal I-subset
of X containing T .

Proof The assertion (1) is from [1, p. 388]; the assertion (2) is from [2, p. 74
and p.80]. �

Corollary 1 Let M(S) be an independence space with σ as its closure operator.
Then,

⋂

α∈A
σ(Xα) is a flat for flats Xα of M(S), (α ∈ A).
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Proof Applying (s1), (s2) and (1),
⋂

α∈A
Xα ⊆ σ(

⋂

α∈A
Xα) ⊆

⋂

α∈A
σ(Xα) =

⋂

α∈A
Xα for flats Xα of M(S), (α ∈ A), so by Definition 1,

⋂

α∈A
Xα =

⋂

α∈A
σ(Xα) =

σ(
⋂

α∈A
Xα) is a flat.

According to Lemma 1 and Definition 1, for an independence space M =
(S, I) with σ as its closure operator, one has σ(X) = X ∪ {x ∈ S|I ∪ x /∈
I for some I ⊆ X such that I ∈ I}. In addition, if an operator σ satisfies
(s1)-(s5), then the corresponding independence space is (S, I(σ)) where I(σ) =
{I ⊆ S|x ∈ I ⇒ x /∈ σ(I \ x)}.

Furthermore, for an independence space M(S), we have σ(X) = σ(I) for a
maximal independent set I contained in X. Especially, σ(B) = S for any basis
B of M(S).

Definition 2 (1) (see [4,p.234]) A lattice L is called geometric if and only if
L is semimodular, L is algebraic, and the compact elements of L are exactly
the finite joins of atoms of L.

Equivalently, L is complete, L is atomistic, all atoms are compact, and L
is semimodular.

(2) (see [4,p.240]) A geometry (A,− ) is a set A and a function X �→ X of
P(A) into itself satisfying the following conditions:
(i) − is a closure relation, that is,

(i1) X ⊆ X;
(i2) If X ⊆ Y , then X ⊆ Y ;
(i3) X = X.

(ii) ∅ = ∅, and {x} = {x}, for x ∈ A;
(iii) If x ∈ X ∪ y, but x /∈ X, then y ∈ X ∪ x;
(iv) If x ∈ X , then x ∈ X1, for some X1 ⊂⊂ X.

(3) (see [4,p.229]) Let A be a set of atoms of a lattice with the least element
0. Then G ⊆ A spans A if and only if, for every a ∈ A, there is a finite G1 ⊆ G
such that a ≤ ∨G1.

The following result is in [4,p.241].

Lemma 2 Let (A,− ) be a geometry. Then L(A,− ) = {X |X ⊆ A} is a ge-
ometric lattice. Conversely, if L is a geometric lattice, A is the set of atoms
of L, and for X ⊆ A, X is the set of atoms spanned by X, then (A,− ) is a
geometry and L ∼= L(A,− ).

We give the definition of a simple independence space as follows.

Definition 3 Let M(S) be an independence space. We define a loop of M(S)
to be an element x of S such that {x} is a dependent set; and define two
elements x, y of S to be parallel if they are not loops but {x, y} is a dependent
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set.
A simple independence space is an independence space with no loops or

parallel elements.

By Definition 3, we see that in an independence space:
x is a loop if and only if x ∈ σ(∅).
Distinct elements x and y are parallel if and only if {x, y} is a circuit.
In this paper, all the knowledge of independence spaces are come from [1,2]

and that of lattice theory are referred to [4].

2 Relation

In this section, we will find out the correspondent relation between a geometric
lattice and a simple independence space. After that, using this correspondence,
some properties of geometric lattices are solved by the way of independence
space theory.

Lemma 3 Let M be an independence space on S and L(M) be the set whose
elements are the flats of M . Then (L(M),⊆) is a lattice and A ∧ B = A ∩
B, A ∨ B = ∩{X|X ∈ L(M), A ∪ B ⊆ X} = σ(A ∪ B) for any two flats A, B.

Proof By the definition of flats of M and Corollary 1, one has A∧B = A∩B.
In addition, S = σ(S) and Definition 1 shows that S ∈ L(M). Combining with
Corollary 1 it follows that A ∨B is well defined. Hence (L(M),⊆) is a lattice.

It is easy to see that the least and greatest element of (L(M),⊆) is σ(∅)
and S respectively. As in [1], we often simply say L(M) instead of (L(M),⊆).
�

Lemma 4 Let M = M(S) be a simple independence space with σ as its closure
operator. Then L(M) is a geometric lattice. Conversely, if L is a geometric
lattice, S is the set of atoms of L, and, for X ⊆ A, X is the set of atoms
spanned by X, then (S,− ) is an independence space with its closure operator σ
as − and L ∼= L(S,− ).

Proof Since M is simple, one has σ(∅) = ∅ and σ(x) = {x}. Hence by
Lemma 1 and Definition 2, (S, σ) is a geometry, and so, in light of Lemma 2,
L(M) = {σ(X)|X ⊆ S} is a geometric lattice.

Conversely, if L is a geometric lattice and S is the set of atoms of L. Then by
Lemma 2, (S,− ) is a geometry and for X ⊆ A, X is the set of atoms spanned
by X. Consider σ : 2S → 2S . Let σ(X) = X where X is the set of atoms
spanned by X. By Definition 2, X is uniquely determined by X, and X ⊆ S.
Hence σ is actually the map −, and further, according to Definition 2, Lemma
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1 and Definition 3, σ is the closure operator of some simple independence space
M(L) on S.

By the proof of [4,p.241,Theorem 11], we see that for the geometry (S,− ) =
(S, σ), L(S,− ) = {X|X ⊆ S} = {σ(X)|X ⊆ S}. In view of Lemma 1, M(L)
could be denoted as (S, σ), i.e. (S,− ), and so L(M(L)) = {σ(X)|X ⊆ S}. How-
ever by Lemma 2, L(S, σ) is a geometric lattice and L ∼= L(S,− ) = L(S, σ) =
L(M(L)), proving our Lemma. �

Based on the proofs of Lemma 4, (1) in Lemma 1 and Lemma 2, we see that
the importance of simple independence spaces lies in the following theorem.

Theorem 1 The correspondence between a geometric lattice L and the inde-
pendence space M(L) on the set of atoms of L is a bijection between the set of
geometric lattices and the set of simple independence spaces.

The relation between a finite simple matroid and a finite geometric lattice
can be found in [1,Theorem 2, p.54], the core of [1, Chapter 3]. Recalling back
the history of matroid theory, Theorem 2 in [1,p.54] is a milestone in dealing
finite matroid theory with lattice theory. We believe that in infinite matroid
theory, Theorem 1 is similar to that of Theorem 2 in [1, p.54].

By Theorem 1, the study of simple independence spaces is just the study of
geometric lattices. Many of the interesting properties of independence spaces
are preserved if we just confine attention to simple independence spaces. We
will make free use of this close relationship between geometric lattices and
independence spaces. It is also useful to “translate” some of the results about
geometric lattices to an independence space framework.

Let M be an independence space. Using the language of geometric lattices,
we get the following (I1)-(I3).
(I1) “M is semimodular” means that for two flats A, B of M , if A ⊂ B and
A ⊂ C ⊂ B for no flats C of M , then “σ(A ∪ C) ⊂ σ(B ∪ C) and σ(A ∪ C) ⊂
D ⊂ σ(B ∪ C) for no flats D of M” or “σ(A ∪ C) = σ(B ∪ C)”.
(I2) A flat A is called compact if and only if A ⊆ σ(∪Xα) for some flats
Xα, (α ∈ A) implies that A ⊆ σ(∪Xβ) for some B ⊂⊂ A and β ∈ B.
(I3) An interval [A, B] of M means [A, B] = {X|A ⊆ X ⊆ B, X is a flat of M}
for given flats A ⊆ B.

Following [4,p.234], an interval of a geometric lattice is a geometric lattice.
It follows from [4,p.235] that any geometric lattice L is complemented, in fact,
it is relatively complemented. The purely lattice-theoretic proofs for the two
results are given in [4,pp.234-235& 6].

Using the relation between finite simple matroids and geometric lattices
(cf.[1,p.54,Theorem 2]), Theorem 3 in [1, p.55] showed the same results as the
above two lattice theoretic results for finite cases by the set-theoretic finite
matroid proof. How about a general geometric lattice’s proof with the appli-
cation of a set-theoretic infinite matroid such as our independence space? Our
Theorem 1 completely solves it by the relation between a geometric lattice
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and an independence space(a class of infinite matroids), henceforth, Theorem
1 presents a way to prove the above two results in set-theoretic in infinite
matroids.

We sketch a set-theoretic independence space proof as the following Theo-
rem 2.

Theorem 2 (1) An interval of a geometric lattice L is again a geometric lattice.
(2) Any geometric lattice L is complemented; in fact, it is relatively com-

plemented.

Proof (1) Let [a, b] be an interval of L. Let Xα ∈ [A, B], (α ∈ A) where A, B
are two flats of M(L) and a = ∨A, b = ∨B. Then by Lemma 1 and Corollary
1, A = σ(A) ⊆ σ(

⋃

α∈A
Xα) ⊆ σ(B) = B, A = σ(A) ⊆ σ(

⋂

α∈A
Xα) ⊆ σ(B) = B,

and so, σ(
⋃

α∈A
Xα), σ(

⋂

α∈A
Xα) =

⋂

α∈A
Xα ∈ [A, B].

Posit E = {σ(A ∪ p)| p is a 1-flat of M(L), p /∈ A, and p ∈ B}. Certainly,
σ(σ(A ∪ p)) = σ(A ∪ p). Then E ⊆ [A, B] and by the born of M(L), one has
that E is the collection of 1-flats of M(L), i.e. all 1-flats of [A, B] are compact.

For X ∈ [A, B], it is evident that X is the join of TX , where TX is some
1-flats of M(L), i.e. X =

⋃

e∈TX

e. Since X ∈ [A, B], it has (TX \ A) ⊆ B and

X = A∪ (
⋃

e∈TX\A

e) =
⋃

e∈TX\A

σ(A ∪ e), i.e., X is a join of some members of E.

Put X, Y ∈ [A, B], X ⊂ Y and X ⊂ T ⊂ Y for no T ∈ [A, B]. Let
Z ∈ [A, B]. Then by the semimodularity of M(L), we have X ∪ Z = Y ∪ Z
or “(X ∪ Z) ⊂ (Y ∪ Z) with (X ∪ Z) ⊂ T ⊂ (Y ∪ Z) for no flat T of M(L),
especially, for no T ∈ [A, B]”. Hence ([A, B],⊆) is semimodular.

Summing up, using Theorem 1 and Definition 2, we have that [a, b] is geo-
metric.

(2) Let A be a flat of M = M(L) = (S, I) and IA be a maximal independent
set of M contained in A and let K = S \ A. Then there is a basis I of M
satisfying IA ⊆ I ⊆ A ∪ K = S. Set B = σ(I \ IA). Since σ(A ∪ B) ⊇
σ(IA ∪ (I \ IA)) = σ(I) = S, one obtains σ(A ∪ B) = S. Posit C = A ∩ B. If
C �= σ(∅), then there is an member p ∈ S satisfying p ∈ C. Since p ∈ σ(I) = S
and p ∈ B = σ(I \ IA), by the (s5), there exist I1 ⊂⊂ I and I2 ⊂⊂ I \ IA such
that p ∈ σ(I1) and p ∈ σ(I2). Because p ∈ σ(I1) ∩ σ(I2) = σ(I1 ∩ I2) = σ(∅).
But M is simple, it has σ(∅) = {∅}, a contradiction. Hence, A∩B = ∅, proving
that L is complemented by Theorem 1. In view of (1) and the above result,
the second statement follows. �

About some other applications of Theorem 1, we will talk as follows.
(α) Suppose M(S) is an independence space with σ as its closure operator

and has 1-flats T = {Fα : α ∈ A1}. Let f : Fα → aα, (α ∈ A1, S1 = {aα|α ∈
A1}). Then obviously, f is a bijection from T to S1. Define σ(

⋃

α∈T
Fα) =

σ′({aα|α ∈ T }) where T ⊆ A1. We can easily verify that σ′ is the closure
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operator of an simple independence space M1 on S1. We call M1 the simple
independence space determined by M(S).

Similar to the above, for a matroid of arbitrary cardinality Ma, we can get
the simple matroid of arbitrary cardinality determined by Ma. (The knowledge
about a matroid of arbitrary cardinality is cf.[3,5,8].)

(β) [3] points out the correspondence between a finite length geometric
lattice Lf and the matroid of arbitrary cardinality M(Lf ) on the set of atoms
of Lf is a bijection between the set of finite length geometric lattices and the
set of simple matroids of arbitrary cardinality. Therefore, consider this result
with Theorem 1 and (α), we earn that every matroid of arbitrary cardinality
is an independence space, but not vice versa.

By [1,p.54,Theorem 2], Theorem 1 and (α), we induce that a finite matroid
is an independence space, but not vice versa.

(γ) Here we only give some instances to show that the application of The-
orem 1 to study on the properties of geometric lattices by the way of inde-
pendence spaces. Actually, it could be used to deal with the properties of
independence spaces by the method of geometric lattice theory. For example,
by [5], one sees that using the correspondence between a finite length geomet-
ric lattice and a matroid of arbitrary cardinality, some results are obtained for
matroids of arbitrary cardinality by the help of geometric lattice theory. Under
similar thoughts, the minors of independence spaces and so on will be seen in
the near future.
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