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Abstract

The paper deals with a full annealing process, for example for a metal
alloy perturbed by some fractional noise caused by conditions in furnace
such as initial temperature, initial structure of material itself, . . . The
energy of the heating matter system depending on its states at each time,
we consider some steady state at full annealing range by introducing a
fractional model for it. And we determine states of the system related to
this steady state.

1 Introduction

As we know, full anneal is a special stage of annealing process where a con-
densed matter (a steel for example) is heated to slightly above the critical
temperature (name austenitic temperature) and maintaining the temperature
for a special period of time to allow the material to fully form austenite or
austenite cementite grain structure (see [1], [2], [4], [6]).

Denote by Xt(t ≥ 0), Xt ∈ R
d, a stochastic process presenting the state

of the material under full annealing stage at time t and g(Xt) is the system
energy corresponding to state Xt, where g is a Borel function on R

n.
It is well-know that a classical stochastic model for annealing states Xt is

given by the following equation:

dXt = −� g(Xt)dt +
√

2TdWt (1.1)
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2 On Fractional Annealing Process

where Wt is a d−dimensional Brownian motion expressing a no-memory noise
and T is the temperature of the system (see [3]). In our context T can be
considered unchange as it is the austenitic temperature.

A problem is that full annealing treatments should be made in batch-type
furnaces that are in full compliance of temperature uniformity and accuracy
requirements of pyrometry AMS2750. In such type of furnace, the system state
(Xt, t ≥ 0) is no more no-memory process because each value of Xt at t can
influence upon its values some times after t. Therefore the model (1.1) is no
more suitable. And we propose the following model

dXt = −� g(Xt)dt +
√

2TdBH
t (1.2)

where:

• BH
t is a d−dimensional fractional Brownian motion of Liouvill form

BH
t = (BHj

t , j = 1, 2, . . . , d),

B
Hj

t =
∫ t

0

(t − s)Hj−1/2dW j
s , j = 1, 2, . . . , d

• Hj are Hurst parameters, 0 < Hj < 1.

• W j
t are standard Brownian motion.

• g = g(x1, . . . , xd) is a Borel function R
d → R and g ∈ C1(Rd).

The state process (Xt) satisfying the equation (1.2) driven by the pertur-
bation BH

t is a process with memory as expected.
But (1.2) is a fractional stochastic differential equation and its solution can

not be found by means of traditional stochastic calculus as we can made for
the equation (1.2). Many approaches have been introduced to overcome this
difficulty for such kind of equation. And one of these approaches is given by
Thao T.H via an approximation method. This method is presented briefly in
Section 2 below.

Now let X∗ = (X∗
1 , X∗

2 , . . . , X∗
d) be a steady state on the full annealing

range that means ∂g
∂xi

(X∗) = 0, i = 1, 2, . . . , d. In this note we try to find the
relation between a state process satisfying (1.2) and the steady state X∗.

2 Fractional Brownian motion and an approxi-

mation approach

Now we recall some facts of one-dimensional fractional Brownian motion in
Mandelbrot form ([7]-[10]). It is a centered Gaussian process WH

t such that its
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covariance function is given by

R(t, s) =
1
2
(t2H + s2H −|t − s|2H), 0 < H < 1 (2.1)

If H = 1/2, R(t, s) = min(t, s) and WH
t is an usual standard Brownian motion.

If H �= 1/2, WH
t is a process of long memory, and Ito calculus cannot applied

to it. And an approximation approach is given as follows ([7]).
It is known that WH

t can be decomposed as

WH
t =

1
Γ(α + 1)

[
Zt +

∫ t

0

(t − s)αdWs

]
, α = H − 1/2 (2.2)

where Zt is a process having absolutely continuous paths and the long memory
property focus at the term

BH
t =

∫ t

0

(t − s)αdWs, α = H − 1/2 (2.3)

which is called the fractional Brownian motion of the Liouville form. Since BH
t

is not a semimartingale we introduce a new process for each ε > 0

BH,ε
t =

∫ t

0

(t − s + ε)αdWs (2.4)

And the following two important facts have been proved in [7] and [10].

(i) BH,ε
t is a semimartingale:

dBH,ε = αϕε
tdt + εαdWt

where

ϕε
t =

∫ t

0

(t − s + ε)α−1dWs

(ii) BH,ε
t converges to BH

t in L2(Ω) as ε tends to 0. And this convergence is
uniform with respect to t belonging to any finite interval I of time, and
we have also

sup
t∈I

∥∥∥BH,ε
t − BH

t

∥∥∥ ≤ C(α)ε2H (2.5)

where C(α) is a positive constant depending only to α = H − 1/2.

Apart from this, a study of fractional stochastic differential equations is pre-
sented in [8], [9] and [10].
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Fractional Brownian motion with H =0.3 and d = 1

Fractional Brownian motion with H =0.7 and d = 1

3 Fractional annealing process

For the sake of the simplicity we consider the case of two dimensions d = 2.
The case of general dimension d can be naturally extended. So we are supposed
to consider the following model

dXt = −� g(Xt)dt +
√

2TdBH
t (3.0)

where

Xt =
(

X1
t

X2
t

)
, g = g(x1, x2), BH

t =

(
BH1

t

BH2
t

)

B
Hj

t =
∫ t

0

(t − s)αj dWj, αj = Hj − 1/2, 0 < Hj < 1, j = 1, 2
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Let X∗ = (X∗
1 , X∗

2 ) be a steady state on full annealing range where ∂g
∂x1

(X∗) =
0, ∂g

∂x2
(X∗) = 0. We have to calculate state satisfying (1.6) and relating to X∗.

3.1 A change of variables

Denote by F1(x1, x2) and F2(x1, x2) be the partial derivatives of g(x1, x2):

F1(x) = F1(x1, x2) = − ∂
∂x1

g(x1, x2)
F2(x) = F2(x1, x2) = − ∂

∂x2
g(x1, x2)

and

F (x) =
(

F1(x)
F2(x)

)

The equation (1.2) can be rewritten as following

dXt = F (Xt)dt +
√

2TdBH
t (3.1.1)

or {
dX1

t = F1(Xt)dt +
√

2TdBH1
t

dX2
t = F2(Xt)dt +

√
2TdBH2

t

We have now
F1(X∗) = 0 and F2(X∗) = 0

Define a change of variable

Xt =
(

X1
t

X2
t

)
→ Ut =

(
U1

t

U2
t

)
= Xt − X∗ =

(
X1

t − X1∗

X2
t − X2∗

)
(3.1.2)

We can see that(
dU1

t

dU2
t

)
=

(
∂F1
∂x1

(X∗) ∂F1
∂x2

(X∗)
∂F1
∂x2

(X∗) ∂F2
∂x2

(X∗)

)(
U1

t

U2
t

)
dt +

√
2T

(
dBH1

t

dBH2
t

)
(3.1.3)

or
dUt = AUtdt +

√
2TdBH

t (3.1.4)

where

A =
(

a1 b1

a2 b2

)
:=

(
∂F1
∂x1

(X∗) ∂F1
∂x2

(X∗)
∂F1
∂x2

(X∗) ∂F2
∂x2

(X∗)

)
(3.1.5)

Then we can write (3.1.3) as follows{
dU1

t = (a1U
1
t + b1U

2
t )dt +

√
2TdBH1

t

dU2
t = (a2U

1
t + b2U

2
t )dt +

√
2TdBH2

t

(3.1.6)



6 On Fractional Annealing Process

3.2 Approximate model

Now we can consider an approximate model corresponding to (3.1.4) or (3.1.6)

by replacing BH
t =

(
BH1

t

BH2
t

)
by BH,ε

t =

(
BH1,ε1

t

BH2,ε2
t

)
as introduced in section 1.

dU ε
t = AU ε

t dt +
√

2TdBH,ε
t (3.2.1)

and {
dU1,ε1

t = (a1U
1,ε1
t + b1U

2,ε2
t )dt +

√
2TdBH1,ε1

t

dU2,ε2
t = (a2U

1,ε1
t + b2U

2,ε2
t )dt +

√
2TdBH2,ε2

t

(3.2.2)

where B
Hj ,εj

t → B
Hj

t in the space L2 = L2(Ω) of square integrable processes,
and ∥∥∥BHj ,εj

t − B
Hj

t

∥∥∥
L2

≤ Cj(αj)ε
2Hj

j , αj = Hj − 1/2, j = 1, 2 (3.2.3)

with C(αj) depending only on αj (see [7]).

3.3 Convergence

Before finding the solution U ε
t of (3.2.1) we will prove a convergence theorem.

Theorem 3.1. The solution U ε
t of (3.2.1) tend to the solution Ut of (2.7) in

L2 as ε → 0, that means

U1,ε1
t → U1

t in L2 as ε1 → 0

and
U2,ε2

t → U2
t in L2 as ε2 → 0

Proof. We have

U1
t − U1,ε1

t =
∫ t

0

[
a1(U1

t − U1,ε1) + b1(U2
t − U2,ε2

t )
]
ds +

√
2T (BH1

t − BH1,ε1
t )

(3.3.1)

U2
t − U2,ε2

t =
∫ t

0

[
a2(U1

t − U1,ε1) + b2(U2
t − U2,ε2

t )
]
ds +

√
2T (BH2

t − BH2,ε2
t )

(3.3.2)
�

Put M = max
(
|a1|
2

, |a2|
2

, |b1|
2

, |b2|
2

)
. Then it follows from (3.3.1), (3.3.2) and

(2.5) that

∥∥∥U1
t − U1,ε1

t

∥∥∥+∥∥∥U2
t − U2,ε2

t

∥∥∥ ≤ C(α, ε)+M

∫ 1

0

[∥∥∥U1
s − U1,ε1

s

∥∥∥ +
∥∥∥U2

t − U2,ε2
t

∥∥∥] ds

(3.3.3)
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where
C(α, ε) =

√
2T
(
C1(α1)ε1+2α1

1 + C2(α2)ε1+2α2
2

)
→ 0

as ε = (ε1, ε2) → 0 Then an application of Gronwall inequality gives us∥∥∥U1
t − U1,ε1

t

∥∥∥ +
∥∥∥U2

t − U2,ε2
t

∥∥∥ ≤ C(α, ε) exp (Mt) → 0

as ε → 0. So that

U ε
t =

(
U1,ε1

t

U2,ε2
t

)
→
(

U1
t

U2
t

)
= Ut in L2 as ε = (ε1, ε2) → 0 (3.3.4)

3.4 Solution U ε
t of (3.2.1)

Now we have to find the solution of U ε
t in its explicit form. We have

dU ε
t = AU ε

t dt +
√

2TdBH,ε
t

where

A =
(

a1 b1

a2 b2

)
, U ε

t =

(
UH1,ε1

t

UH2,ε2
t

)
, Bε

t =

(
BH1,ε1

t

BH2,ε2
t

)

It is easy to see that

U ε
t =

∫ t

0

eA(t−s)
√

2TdBH,ε
t (3.4.1)

A method by Oksendal can be applied ([6], page 99) to obtain

eA(t−s) =
e−λ(t−s)

ξ
[ξ cos ξ(t − s) + λ sin ξ(t − s)

(
1 0
0 1

)
+ A sin ξ(t − s)]

(3.4.2)
where

λ = −b2

2
, ξ =

∣∣∣∣∣a2 − b2
2

4

∣∣∣∣∣ (3.4.3)

(3.4.2) can be rewritten also as

eA(t−s) =
e−λ(t−s)

ξ

[
ξ cos ξ(t − s) + λ sin ξ(t − s) 0
0 ξ cos ξ(t − s) + λ sin ξ(t − s)

]
+
(

a1 a2

b1 b2

)
sin ξ(t − s)

=
e−λ(t−s)

ξ

(
A1 B1

A2 B2

) (3.4.4)

where

A1 = ξ cos (t − s) + (λ + a1) sin (t − s)
B1 = b1 sin (t − s)
A2 = a2 sin(t − s)
B2 = ξ cos(t − s) + (λ + b2) sin(t − s)

(3.4.5)
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Then it follow from (3.4.1), (3.4.3) and (3.4.4) that we can state now:

Theorem 3.2. The solution of the approximate model (3.2.1) given by

U ε
t =

(
U1,ε1

t

U2,ε2
t

)
=

√
2T

ξ

∫ t

0

(
A1dBH1,ε1

s + B1dBH2,ε2

A2dBH1,ε1
s + B2dBH2,ε2

)
(3.4.6)

where A1, B1, A2, B2 and ξ are defined in (3.4.5), (3.4.3) and (3.1.5).

In account of the Convergence Theorem 3.1 we can obtain

Theorem 3.3. Given a steady state X∗ in the full fractional annealing range
the state Xt of the system is the limit in the spase L2(Ω) of Xε

t when ε tends
to 0:

Xt = L2 − lim
ε→0

Xε
t

where Xε
t = X∗ + U ε

t and U ε
t is obtained from (3.4.6).

Conclusion

Then each state Xt of the annealing system can be considered as a L2−limit
of (X∗ + U ε

t ) as ε → 0 where X∗ is a steady state of full annealing range.
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