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Abstract

The main purpose of this paper is to prove the following result. Let
R be a 2-torsion free semiprime *-ring and α, β are endomorphisms of
R. Then any Jordan triple (α, β)∗-derivation on R is a Jordan (α, β)∗-
derivation. As an application of this result, we establish that any linear
Jordan triple (α, β)∗-derivation on a semisimple H∗-algebra is a linear
Jordan (α,β)∗-derivation.

1 Introduction

This research is inspired by our earlier work [1] and the work of M. Fošner
and D. Ileševic [5]. Throughout, R will denote an associative ring and A will
represent a ∗-algebra over the field F . Let n ≥ 2 be an integer. A ring R is
said to be n-torsion free if for x ∈ R, nx = 0 implies x = 0. Recall that R is
prime if aRb = {0} implies a = 0 or b = 0. A ring R is called semiprime if
aRa = {0} implies a = 0. An additive mapping x �→ x∗ satisfying (xy)∗ = y∗x∗

and (x∗)∗ = x for all x, y ∈ R is called an involution. A ring equipped with
an involution is called a ∗-ring or a ring with involution. If R is an algebra
we assume additionally that (λx)∗ = λ̄x∗ for all x, y ∈ R and λ ∈ F, where λ̄
denotes the complex conjugate of λ. An algebra equipped with an involution
is called a ∗-algebra or algebra with involution. The radical of A, denoted by
rad(A), is the intersection of all maximal left(or right) ideals of A. An algebra
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A is called semisimple if rad(A) = 0. A Banach algebra is a linear associative
algebra which, as a vector space, is a Banach space with norm ‖ · ‖ satisfying
the multiplicative inequality; ‖xy‖ ≤ ‖x‖‖y‖ for all x and y in A. A ∗-algebra
which is also a Banach algebra is called a Banach ∗-algebra. Let us recall that
a semisimple H∗-algebra is a semisimple Banach ∗-algebra whose norm is a
Hilbert space norm such that (x, yz∗) = (xz, y) = (z, x∗y) is fulfilled for all
x, y, z ∈ A (see [2] for details).

An additive mapping d : R → R is called a derivation (resp. Jordan deriva-
tion) if d(xy) = d(x)y + xd(y) (resp. d(x2) = d(x)x + xd(x)) holds for all
x, y ∈ R. An additive mapping d : R → R is called a Jordan triple derivation
if d(xyx) = d(x)yx + xd(y)x + xyd(x) holds for all x, y ∈ R. Of course, any
derivation is a Jordan triple derivation. Moreover, if R is a 2-torsion free, one
can easily prove that any Jordan derivation is a Jordan triple derivation, but
converse is not true in general. A classical result due to Brešar ([3], Theorem
4.3) asserts that a Jordan triple derivation on 2-torsion free semiprime ring is
a derivation.

Let R be a ∗-ring, and let α, β be endomorphisms of R. An additive map-
ping d : R → R is said to be a ∗-derivation (resp. Jordan ∗-derivation) if
d(xy) = d(x)y∗ + xd(y) (resp. d(x2) = d(x)x∗ + xd(x)) holds for all x, y ∈ R.
Following [5], an additive mapping d : R → R is called a Jordan triple ∗-
derivation if d(xyx) = d(x)y∗x∗ + xd(y)x∗ + xyd(x) holds for all x, y ∈ R.
One can easily prove that every Jordan ∗-derivation on a 2-torsion free ∗-ring
is a Jordan triple ∗-derivation (see the proof of [[4], Lemma 2]) but not con-
versely. In [7], P. Šemrl has proved that if R is a real Banach ∗-algebra with
identity then the converse also holds. Further, Vukman [8] established that
any Jordan triple ∗-derivation on a 6-torsion free semiprime *-ring is a Jordan
∗-derivation. In the year 2008, M. Fošner and D. Iliševic [5] generalized this
result for 2-torsion free semiprime ∗-rings.

In [1], the notion of Jordan triple ∗-derivation was extended as follows:
an additive mapping d : R → R is called a Jordan triple (α, β)∗-derivation
if d(xyx) = d(x)α(y∗x∗) + β(x)d(y)α(x∗) + β(xy)d(x) holds for all x, y ∈ R,
where α and β are endomorphisms of R. In any ∗-ring with automorphisms α
and β, the mapping x �→ aα(x∗) − β(x)a, where a is fixed element in R, is a
Jordan triple (α, β)∗-derivation on R. Note that for IR, the identity map on R,
a Jordan triple (IR, IR)∗-derivation is just a Jordan triple ∗-derivation. Using
similar approach as in Lemma 2 of [4], it can be easily seen that any Jordan
(α, β)∗-derivation on a 2-torsion free ∗-ring is a Jordan triple (α, β)∗-derivation,
but not conversely(cf.; [[1], Example 2.4]). Most recently, the author together
with A. Fošner [1] proved that on a 6-torsion free semiprime ∗-ring R, every
Jordan triple (α, β)∗-derivation on R is a Jordan (α, β)∗-derivation.
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The main goal of this paper is to improve the above mentioned result by
removing 3-torsion free restriction and prove that any Jordan triple (α, β)∗-
derivation on 2-torsion free semiprime ∗-ring is a Jordan (α, β)∗-derivation. As
consequence of this result, it was shown that any linear Jordan triple (α, β)∗-
derivation on a semisimple H∗-algebra is a linear Jordan (α, β)∗-derivation.

2 The main results

The following theorem is a generalization of [[5], Theorem 5.2] and [[8], Theorem
1].

Theorem 1. Let R be a 2-torsion free semiprime ∗-ring, and let α, β be sur-
jective endomorphisms of R. Let d : R → R be an additive mapping. Then the
following conditions are equivalent:

(i) d is a Jordan (α, β)∗-derivation;

(ii) d(xyx) = d(x)α(y∗x∗) + β(x)d(y)α(x∗) + β(xy)d(x) for all x, y ∈ R.

In order to prove above theorem, first we establish the following technical
lemma which extended the result of [[6], Section 2, p-5].

Lemma 1. Let R be a semiprime ∗-ring, and let α, β be surjective endomor-
phisms of R. If there exists element x ∈ R such that β(y)xα(y∗) = 0 for all
y ∈ R or α(y)xβ(y∗) = 0 for all y ∈ R, then x = 0.

Proof. We consider the relation β(y)xα(y∗) = 0 for all y ∈ R. Replacing y by
y∗ + z we obtain

β(y∗)xα(y)+β(z)xα(y)+β(y∗ )xα(z∗)+β(z)xα(z∗) = 0 for all y, z ∈ R. (1)

This implies that

β(z)xα(y) + β(y∗)xα(z∗) = 0, for all y, z ∈ R. (2)

Replace z∗ by y in (2) to get

β(z)xα(y) + β(y∗)xα(y) = 0 for all y, z ∈ R. (3)

and hence in view of our hypothesis we obtain

β(z)xα(y) = 0 for all y, z ∈ R.
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Using the last relation, we find that

(xβ(z)x)α(y)(xβ(z)x) = x(β(z)xα(y))(xβ(z)x)
= 0 for all y, z ∈ R. (4)

Therefore, we find that (xβ(z)x)α(y)(xβ(z)x) = 0 for all y, z ∈ R. Since α is
a surjective endomorphism of R, so we have (xβ(z)x)R(xβ(z)x) = {0} for all
z ∈ R. The semiprimeness of R forces that xβ(z)x = 0 for all z ∈ R. Since R
is semiprime and β is surjective endomorphism of R, we conclude that x = 0.

Using similar arguments one can prove that if α(y)xβ(y∗ ) = 0 for all y ∈ R,
then x = 0. The proof is complete. �

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. We proceed to prove (i) implies (ii). Suppose that d
is a Jordan (α, β)∗-derivation i.e.,

d(x2) = d(x)α(x∗) + β(x)d(x)) for all x ∈ R. (5)

The linearization of the above relation yields that

d(xy + yx) = d(x)α(y∗) + β(x)d(y) + d(y)α(x∗)
+ β(y)d(x) for all x, y ∈ R. (6)

Replacing y by xy + yx in (6), then on one hand we find that

d(x(xy + yx) + (xy + yx)x) = d(x)α(x∗y∗) + d(x)α(y∗x∗) + β(x)d(x)α(y∗))

+ β(x2)d(y) + β(x)d(y)α(x∗) + β(xy)d(x)

+ d(x)α(y∗x∗) + β(x)d(y)α(x∗) + d(y)α(x∗2
)

+β(y)d(x)α(x∗) + β(xy)d(x) + β(yx)d(x) for all x, y ∈ R. (7)

On the other hand, we have

d(x(xy + yx) + (xy + yx)x) = d(x2y + yx2) + 2d(xyx)

= d(x)α(x∗y∗) + β(x)d(x)α(y∗) + β(x2)d(y)

+ d(y)α((x∗2
) + β(y)d(x)α(x∗) + β(yx)d(x)

+ 2d(xyx) for all x, y ∈ R. (8)

Combining (7) and (8), we obtain

2d(xyx) = 2{d(x)α(y∗x∗) + β(x)d(y)α(x∗) + β(xy)d(x)} for all x, y ∈ R.

Since R is 2-torsion free, the last expression forces that

d(xyx) = d(x)α(y∗x∗) + β(x)d(y)α(x∗) + β(xy)d(x) for all x, y ∈ R; (9)
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and hence d is Jordan triple (α, β)∗-derivation on R.

Let us prove the converse part i.e., (ii) implies (i). Suppose relation (9)
holds. Replace x by x + z in (9) to get

d((x + z)y(x + z)) = d(x + z)α(y∗)α(x∗ + z∗) + β(x + z)d(y)α(x∗ + z∗)
+ β(x + z)β(y)d(x + z)

= d(x)α(y∗x∗) + d(z)α(y∗x∗) + d(x)α(y∗z∗) + d(z)α(y∗z∗)
+ β(x)d(y)α(x∗) + β(z)d(y)α(x∗) + β(x)d(y)α(z∗)
+ β(z)d(y)α(z∗) + β(xy)d(x) + β(zy)d(x) + β(xy)d(z)
+ β(zy)d(z) for all x, y, z ∈ R. (10)

On the other hand, we have

d((x + z)y(x + z)) = d(xyx) + d(zyz) + d(xyz + zyx)
= d(x)α(y∗x∗) + β(x)d(y)α(x∗) + β(xy)d(x)
+ d(z)α(y∗z∗) + β(z)d(y)α(z∗) + β(zy)d(z)
+ d(xyz + zyx) for all x, y, z ∈ R. (11)

Comparing (10) and (11), we arrive at

d(xyz + zyx) = d(x)α(y∗z∗) + β(x)d(y)α(z∗) + β(xy)d(z)
+ d(z)α(y∗x∗) + β(z)d(y)α(x∗)
+ β(zy)d(x) for all x, y, z ∈ R. (12)

Since d is additive, so for any x, y ∈ R, we have

d((xy)2) = d(xyxy) = d(xy(xy)+(xy)yx−xy2x) = d(xy(xy)+(xy)yx)−d(xy2x).

Application of (9) and (12) yields that

d((xy)2) = d(x)α(y∗)α(y∗x∗) + β(x)d(y)α(y∗x∗) + β(xy)d(xy)
+ d(xy)α(y∗x∗) + β(xy)d(y)α(x∗) + β(xy)β(y)d(x)

− d(x)α(y∗
2
)α(x∗) − β(x)d(y2)α(x∗)

− β(xy2)d(x) for all x, y ∈ R. (13)

For any x, y ∈ R, the above relation implies that

d(xy)2 − d(xy)α(y∗x∗)−β(xy)d(xy)

+β(x)(d(y2) − d(y)α(y∗) − β(y)d(y))α(x∗) = 0. (14)
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This can be rewritten as

δ(xy) + β(x)δ(y)α(x∗) = 0 for all x, y ∈ R; (15)

where δ(x) = d(x2) − d(x)α(x∗) − β(x)d(x) for all x ∈ R. Using equation (15)
three times, we find that

2β(zy)δ(x)α(y∗z∗) = β(z)(β(y)δ(x)α(y∗ ))α(z∗) + β(zy)δ(x)α(y∗z∗)
= β(z)(−δ(yx)α(z∗)) − δ((zy)x)
= −β(z)δ(yx)α(z∗) − δ(zyx)
= −β(z)δ(yx)α(z∗) − δ(zyx)
= δ(z(yx)) − δ(zyx)
= 0 for all x, y, z ∈ R. (16)

This implies that

2β(zy)δ(x)α(y∗z∗) = 0 for all x, y, z ∈ R. (17)

Since R is 2-torsion free, the above expression forces that β(zy)δ(x)α(y∗z∗) = 0
for all x, y, z ∈ R i.e., β(z)(β(y)δ(x)α(y∗ ))α(z∗) = 0 for all x, y, z ∈ R. Ap-
plication of Lemma 1 yields that β(y)δ(x)α(y∗ ) = 0 for all x, y ∈ R. Again,
using Lemma 1, we obtain δ(x) = 0 i.e., d(x2) = d(x)α(x∗)+β(x)d(x) for all
x ∈ R. Hence, d is a Jordan (α, β)∗-derivation on R. This completes the proof
of our theorem.

Following are the immediate consequences of Theorem 1.

Corollary 1. Let R be a 2-torsion free semisimple ∗-ring, and let α, β be
surjective endomorphism of R. Let d : R → R be an additive mapping. Then
the following conditions are equivalent:

(i) d is a Jordan (α, β)∗-derivation;

(ii) d(xyx) = d(x)α(y∗x∗) + α(x)d(y)α(x∗) + β(xy)d(x) for all x, y ∈ R.

Proof. As a consequence of Theorem 1 and of the fact that every simple ∗-ring
is a semiprime ∗-ring.

Corollary 2. ( [5], Theorem 5.2) Let R be a 2-torsion free semiprime ∗-ring,
and let d : R → R be an additive mapping. Then the following condition, are
mutually equivalent:

(i) d is a Jordan ∗-derivation;
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(ii) d(xyx) = d(x)y∗x∗ + xd(y)x∗ + xyd(x) for all x, y ∈ R.

Corollary 3. ( [8], Theorem 1). Let R be a 6−torsion free semiprime ∗−ring
and let d : R → R be an additive mapping satisfying the relation

d(xyx) = d(x)y∗x∗ + xd(y)x∗ + xyd(x)

for all x, y ∈ R. Then d is a Jordan ∗−derivation on R.

Finally, we prove another theorem in the spirit of Theorem 1, that is,

Theorem 2. Let A be a semisimple H∗-algebra. Suppose that α and β are
surjective homomorphisms of A. Let d : A → A be a linear mapping. Then the
following conditions are equivalent:

(i) d is a Jordan (α, β)∗-derivation;

(ii) d(xyx) = d(x)α(y∗x∗) + β(x)d(y)α(x∗) + β(xy)d(x) for all x, y ∈ A.

Proof. By the structure theorem of semisimple H∗-algebra (see [2]), every
semisimple H∗-algebra is a semiprime ∗-ring and hence proof is complete by
Theorem 1.

Corollary 4. Let A be a semisimple H∗-algebra. Let d : A → A be a linear
mapping. Then the following conditions are equivalent:

(i) d is a Jordan ∗-derivation;

(ii) d(xyx) = d(x)y∗x∗ + xd(y)x∗ + xyd(x) for all x, y ∈ A.
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