NOTE ON JORDAN TRIPLE $(\alpha, \beta)^{*}$-DERIVATIONS IN H^{*}-ALGEBRAS

Shakir Ali
Department of Mathematics
Aligarh Muslim University, Aligarh-202002, India
e-mail: shakir.ali.mm@amu.ac.in

Abstract

The main purpose of this paper is to prove the following result. Let R be a 2 -torsion free semiprime ${ }^{*}$-ring and α, β are endomorphisms of R. Then any Jordan triple $(\alpha, \beta)^{*}$-derivation on R is a Jordan $(\alpha, \beta)^{*}$ derivation. As an application of this result, we establish that any linear Jordan triple $(\alpha, \beta)^{*}$-derivation on a semisimple H^{*}-algebra is a linear Jordan $(\alpha, \beta)^{*}$-derivation.

1 Introduction

This research is inspired by our earlier work [1] and the work of M. Fošner and D. Ileševic [5]. Throughout, R will denote an associative ring and A will represent a $*$-algebra over the field F. Let $n \geq 2$ be an integer. A ring R is said to be n-torsion free if for $x \in R, n x=0$ implies $x=0$. Recall that R is prime if $a R b=\{0\}$ implies $a=0$ or $b=0$. A ring R is called semiprime if $a R a=\{0\}$ implies $a=0$. An additive mapping $x \mapsto x^{*}$ satisfying $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$ is called an involution. A ring equipped with an involution is called a $*$-ring or a ring with involution. If R is an algebra we assume additionally that $(\lambda x)^{*}=\bar{\lambda} x^{*}$ for all $x, y \in R$ and $\lambda \in F$, where $\bar{\lambda}$ denotes the complex conjugate of λ. An algebra equipped with an involution is called a $*$-algebra or algebra with involution. The radical of A, denoted by $\operatorname{rad}(A)$, is the intersection of all maximal left(or right) ideals of A. An algebra

[^0]A is called semisimple if $\operatorname{rad}(A)=0$. A Banach algebra is a linear associative algebra which, as a vector space, is a Banach space with norm $\|\cdot\|$ satisfying the multiplicative inequality; $\|x y\| \leq\|x\|\|y\|$ for all x and y in A. A $*$-algebra which is also a Banach algebra is called a Banach $*$-algebra. Let us recall that a semisimple H^{*}-algebra is a semisimple Banach $*$-algebra whose norm is a Hilbert space norm such that $\left(x, y z^{*}\right)=(x z, y)=\left(z, x^{*} y\right)$ is fulfilled for all $x, y, z \in A$ (see [2] for details).

An additive mapping $d: R \rightarrow R$ is called a derivation (resp. Jordan derivation) if $d(x y)=d(x) y+x d(y)$ (resp. $\left.d\left(x^{2}\right)=d(x) x+x d(x)\right)$ holds for all $x, y \in R$. An additive mapping $d: R \rightarrow R$ is called a Jordan triple derivation if $d(x y x)=d(x) y x+x d(y) x+x y d(x)$ holds for all $x, y \in R$. Of course, any derivation is a Jordan triple derivation. Moreover, if R is a 2 -torsion free, one can easily prove that any Jordan derivation is a Jordan triple derivation, but converse is not true in general. A classical result due to Brešar ([3], Theorem 4.3) asserts that a Jordan triple derivation on 2-torsion free semiprime ring is a derivation.

Let R be a $*$-ring, and let α, β be endomorphisms of R. An additive mapping $d: R \rightarrow R$ is said to be a $*$-derivation (resp. Jordan $*$-derivation) if $d(x y)=d(x) y^{*}+x d(y)$ (resp. $\left.d\left(x^{2}\right)=d(x) x^{*}+x d(x)\right)$ holds for all $x, y \in R$. Following [5], an additive mapping $d: R \rightarrow R$ is called a Jordan triple *- 2 derivation if $d(x y x)=d(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)$ holds for all $x, y \in R$. One can easily prove that every Jordan $*$-derivation on a 2 -torsion free $*$-ring is a Jordan triple $*$-derivation (see the proof of [[4], Lemma 2]) but not conversely. In [7], P. Šemrl has proved that if R is a real Banach $*$-algebra with identity then the converse also holds. Further, Vukman [8] established that any Jordan triple $*$-derivation on a 6 -torsion free semiprime *-ring is a Jordan *-derivation. In the year 2008, M. Fošner and D. Iliševic [5] generalized this result for 2 -torsion free semiprime $*$-rings.

In [1], the notion of Jordan triple $*$-derivation was extended as follows: an additive mapping $d: R \rightarrow R$ is called a Jordan triple $(\alpha, \beta)^{*}$-derivation if $d(x y x)=d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x)$ holds for all $x, y \in R$, where α and β are endomorphisms of R. In any $*$-ring with automorphisms α and β, the mapping $x \mapsto a \alpha\left(x^{*}\right)-\beta(x) a$, where a is fixed element in R, is a Jordan triple $(\alpha, \beta)^{*}$-derivation on R. Note that for I_{R}, the identity map on R, a Jordan triple $\left(I_{R}, I_{R}\right)^{*}$-derivation is just a Jordan triple $*$-derivation. Using similar approach as in Lemma 2 of [4], it can be easily seen that any Jordan $(\alpha, \beta)^{*}$-derivation on a 2 -torsion free $*$-ring is a Jordan triple $(\alpha, \beta)^{*}$-derivation, but not conversely(cf.; [[1], Example 2.4]). Most recently, the author together with A. Fošner [1] proved that on a 6 -torsion free semiprime $*$-ring R, every Jordan triple $(\alpha, \beta)^{*}$-derivation on R is a Jordan $(\alpha, \beta)^{*}$-derivation.

The main goal of this paper is to improve the above mentioned result by removing 3 -torsion free restriction and prove that any Jordan triple $(\alpha, \beta)^{*}$ derivation on 2 -torsion free semiprime $*$-ring is a Jordan $(\alpha, \beta)^{*}$-derivation. As consequence of this result, it was shown that any linear Jordan triple $(\alpha, \beta)^{*}$ derivation on a semisimple H^{*}-algebra is a linear Jordan $(\alpha, \beta)^{*}$-derivation.

2 The main results

The following theorem is a generalization of [[5], Theorem 5.2] and [[8], Theorem $1]$.

Theorem 1. Let R be a 2-torsion free semiprime $*$-ring, and let α, β be surjective endomorphisms of R. Let $d: R \rightarrow R$ be an additive mapping. Then the following conditions are equivalent:
(i) d is a Jordan $(\alpha, \beta)^{*}$-derivation;
(ii) $d(x y x)=d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x)$ for all $x, y \in R$.

In order to prove above theorem, first we establish the following technical lemma which extended the result of [[6], Section 2, p-5].

Lemma 1. Let R be a semiprime $*$-ring, and let α, β be surjective endomorphisms of R. If there exists element $x \in R$ such that $\beta(y) x \alpha\left(y^{*}\right)=0$ for all $y \in R$ or $\alpha(y) x \beta\left(y^{*}\right)=0$ for all $y \in R$, then $x=0$.

Proof. We consider the relation $\beta(y) x \alpha\left(y^{*}\right)=0$ for all $y \in R$. Replacing y by $y^{*}+z$ we obtain

$$
\begin{equation*}
\beta\left(y^{*}\right) x \alpha(y)+\beta(z) x \alpha(y)+\beta\left(y^{*}\right) x \alpha\left(z^{*}\right)+\beta(z) x \alpha\left(z^{*}\right)=0 \text { for all } y, z \in R . \tag{1}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\beta(z) x \alpha(y)+\beta\left(y^{*}\right) x \alpha\left(z^{*}\right)=0, \text { for all } y, z \in R . \tag{2}
\end{equation*}
$$

Replace z^{*} by y in (2) to get

$$
\begin{equation*}
\beta(z) x \alpha(y)+\beta\left(y^{*}\right) x \alpha(y)=0 \text { for all } y, z \in R . \tag{3}
\end{equation*}
$$

and hence in view of our hypothesis we obtain

$$
\beta(z) x \alpha(y)=0 \text { for all } y, z \in R .
$$

Using the last relation, we find that

$$
\begin{align*}
(x \beta(z) x) \alpha(y)(x \beta(z) x) & =x(\beta(z) x \alpha(y))(x \beta(z) x) \\
& =0 \text { for all } y, z \in R . \tag{4}
\end{align*}
$$

Therefore, we find that $(x \beta(z) x) \alpha(y)(x \beta(z) x)=0$ for all $y, z \in R$. Since α is a surjective endomorphism of R, so we have $(x \beta(z) x) R(x \beta(z) x)=\{0\}$ for all $z \in R$. The semiprimeness of R forces that $x \beta(z) x=0$ for all $z \in R$. Since R is semiprime and β is surjective endomorphism of R, we conclude that $x=0$.

Using similar arguments one can prove that if $\alpha(y) x \beta\left(y^{*}\right)=0$ for all $y \in R$, then $x=0$. The proof is complete.

We are now ready to complete the proof of Theorem 1.
Proof of Theorem 1. We proceed to prove (i) implies (ii). Suppose that d is a Jordan $(\alpha, \beta)^{*}$-derivation i.e.,

$$
\begin{equation*}
\left.d\left(x^{2}\right)=d(x) \alpha\left(x^{*}\right)+\beta(x) d(x)\right) \text { for all } x \in R \tag{5}
\end{equation*}
$$

The linearization of the above relation yields that

$$
\begin{align*}
d(x y+y x)= & d(x) \alpha\left(y^{*}\right)+\beta(x) d(y)+d(y) \alpha\left(x^{*}\right) \\
& +\beta(y) d(x) \text { for all } x, y \in R . \tag{6}
\end{align*}
$$

Replacing y by $x y+y x$ in (6), then on one hand we find that

$$
\begin{aligned}
d(x(x y+y x)+(x y+y x) x)= & \left.d(x) \alpha\left(x^{*} y^{*}\right)+d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(x) \alpha\left(y^{*}\right)\right) \\
& +\beta\left(x^{2}\right) d(y)+\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x) \\
& +d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(x^{*}\right)+d(y) \alpha\left(x^{*^{2}}\right) \\
+\beta(y) d(x) \alpha\left(x^{*}\right) & +\beta(x y) d(x)+\beta(y x) d(x) \text { for all } x, y \in R .
\end{aligned}
$$

On the other hand, we have

$$
\begin{align*}
d(x(x y+y x)+(x y+y x) x)= & d\left(x^{2} y+y x^{2}\right)+2 d(x y x) \\
= & d(x) \alpha\left(x^{*} y^{*}\right)+\beta(x) d(x) \alpha\left(y^{*}\right)+\beta\left(x^{2}\right) d(y) \\
& +d(y) \alpha\left(\left(x^{*^{2}}\right)+\beta(y) d(x) \alpha\left(x^{*}\right)+\beta(y x) d(x)\right. \\
& +2 d(x y x) \text { for all } x, y \in R . \tag{8}
\end{align*}
$$

Combining (7) and (8), we obtain

$$
2 d(x y x)=2\left\{d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x)\right\} \text { for all } x, y \in R
$$

Since R is 2-torsion free, the last expression forces that

$$
\begin{equation*}
d(x y x)=d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x) \text { for all } x, y \in R \tag{9}
\end{equation*}
$$

and hence d is Jordan triple $(\alpha, \beta)^{*}$-derivation on R.

Let us prove the converse part i.e., (ii) implies (i). Suppose relation (9) holds. Replace x by $x+z$ in (9) to get

$$
\begin{align*}
d((x+z) y(x+z))= & d(x+z) \alpha\left(y^{*}\right) \alpha\left(x^{*}+z^{*}\right)+\beta(x+z) d(y) \alpha\left(x^{*}+z^{*}\right) \\
& +\beta(x+z) \beta(y) d(x+z) \\
= & d(x) \alpha\left(y^{*} x^{*}\right)+d(z) \alpha\left(y^{*} x^{*}\right)+d(x) \alpha\left(y^{*} z^{*}\right)+d(z) \alpha\left(y^{*} z^{*}\right) \\
& +\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(z) d(y) \alpha\left(x^{*}\right)+\beta(x) d(y) \alpha\left(z^{*}\right) \\
& +\beta(z) d(y) \alpha\left(z^{*}\right)+\beta(x y) d(x)+\beta(z y) d(x)+\beta(x y) d(z) \\
& +\beta(z y) d(z) \text { for all } x, y, z \in R . \tag{10}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
d((x+z) y(x+z))= & d(x y x)+d(z y z)+d(x y z+z y x) \\
= & d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x) \\
& +d(z) \alpha\left(y^{*} z^{*}\right)+\beta(z) d(y) \alpha\left(z^{*}\right)+\beta(z y) d(z) \\
& +d(x y z+z y x) \text { for all } x, y, z \in R . \tag{11}
\end{align*}
$$

Comparing (10) and (11), we arrive at

$$
\begin{align*}
d(x y z+z y x) & =d(x) \alpha\left(y^{*} z^{*}\right)+\beta(x) d(y) \alpha\left(z^{*}\right)+\beta(x y) d(z) \\
& +d(z) \alpha\left(y^{*} x^{*}\right)+\beta(z) d(y) \alpha\left(x^{*}\right) \\
& +\beta(z y) d(x) \text { for all } x, y, z \in R . \tag{12}
\end{align*}
$$

Since d is additive, so for any $x, y \in R$, we have
$d\left((x y)^{2}\right)=d(x y x y)=d\left(x y(x y)+(x y) y x-x y^{2} x\right)=d(x y(x y)+(x y) y x)-d\left(x y^{2} x\right)$.
Application of (9) and (12) yields that

$$
\begin{align*}
d\left((x y)^{2}\right)= & d(x) \alpha\left(y^{*}\right) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(y^{*} x^{*}\right)+\beta(x y) d(x y) \\
& +d(x y) \alpha\left(y^{*} x^{*}\right)+\beta(x y) d(y) \alpha\left(x^{*}\right)+\beta(x y) \beta(y) d(x) \\
& -d(x) \alpha\left(y^{*^{2}}\right) \alpha\left(x^{*}\right)-\beta(x) d\left(y^{2}\right) \alpha\left(x^{*}\right) \\
& -\beta\left(x y^{2}\right) d(x) \text { for all } x, y \in R . \tag{13}
\end{align*}
$$

For any $x, y \in R$, the above relation implies that

$$
\begin{align*}
& d(x y)^{2}-d(x y) \alpha\left(y^{*} x^{*}\right)-\beta(x y) d(x y) \\
& \quad+\beta(x)\left(d\left(y^{2}\right)-d(y) \alpha\left(y^{*}\right)-\beta(y) d(y)\right) \alpha\left(x^{*}\right)=0 . \tag{14}
\end{align*}
$$

This can be rewritten as

$$
\begin{equation*}
\delta(x y)+\beta(x) \delta(y) \alpha\left(x^{*}\right)=0 \text { for all } x, y \in R \tag{15}
\end{equation*}
$$

where $\delta(x)=d\left(x^{2}\right)-d(x) \alpha\left(x^{*}\right)-\beta(x) d(x)$ for all $x \in R$. Using equation (15) three times, we find that

$$
\begin{align*}
2 \beta(z y) \delta(x) \alpha\left(y^{*} z^{*}\right) & =\beta(z)\left(\beta(y) \delta(x) \alpha\left(y^{*}\right)\right) \alpha\left(z^{*}\right)+\beta(z y) \delta(x) \alpha\left(y^{*} z^{*}\right) \\
& =\beta(z)\left(-\delta(y x) \alpha\left(z^{*}\right)\right)-\delta((z y) x) \\
& =-\beta(z) \delta(y x) \alpha\left(z^{*}\right)-\delta(z y x) \\
& =-\beta(z) \delta(y x) \alpha\left(z^{*}\right)-\delta(z y x) \\
& =\delta(z(y x))-\delta(z y x) \\
& =0 \text { for all } x, y, z \in R . \tag{16}
\end{align*}
$$

This implies that

$$
\begin{equation*}
2 \beta(z y) \delta(x) \alpha\left(y^{*} z^{*}\right)=0 \text { for all } x, y, z \in R \tag{17}
\end{equation*}
$$

Since R is 2-torsion free, the above expression forces that $\beta(z y) \delta(x) \alpha\left(y^{*} z^{*}\right)=0$ for all $x, y, z \in R$ i.e., $\beta(z)\left(\beta(y) \delta(x) \alpha\left(y^{*}\right)\right) \alpha\left(z^{*}\right)=0$ for all $x, y, z \in R$. Application of Lemma 1 yields that $\beta(y) \delta(x) \alpha\left(y^{*}\right)=0$ for all $x, y \in R$. Again, using Lemma 1, we obtain $\delta(x)=0$ i.e., $d\left(x^{2}\right)=d(x) \alpha\left(x^{*}\right)+\beta(x) d(x)$ for all $x \in R$. Hence, d is a Jordan $(\alpha, \beta)^{*}$-derivation on R. This completes the proof of our theorem.

Following are the immediate consequences of Theorem 1.

Corollary 1. Let R be a 2-torsion free semisimple $*-r i n g$, and let α, β be surjective endomorphism of R. Let $d: R \rightarrow R$ be an additive mapping. Then the following conditions are equivalent:
(i) d is a Jordan $(\alpha, \beta)^{*}$-derivation;
(ii) $d(x y x)=d(x) \alpha\left(y^{*} x^{*}\right)+\alpha(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x)$ for all $x, y \in R$.

Proof. As a consequence of Theorem 1 and of the fact that every simple $*$-ring is a semiprime $*$-ring.

Corollary 2. ([5], Theorem 5.2) Let R be a 2-torsion free semiprime *-ring, and let $d: R \rightarrow R$ be an additive mapping. Then the following condition, are mutually equivalent:
(i) d is a Jordan *-derivation;
(ii) $d(x y x)=d(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)$ for all $x, y \in R$.

Corollary 3. ([8], Theorem 1). Let R be a 6 -torsion free semiprime *-ring and let $d: R \rightarrow R$ be an additive mapping satisfying the relation

$$
d(x y x)=d(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)
$$

for all $x, y \in R$. Then d is a Jordan *-derivation on R.
Finally, we prove another theorem in the spirit of Theorem 1, that is,
Theorem 2. Let A be a semisimple H^{*}-algebra. Suppose that α and β are surjective homomorphisms of A. Let $d: A \rightarrow A$ be a linear mapping. Then the following conditions are equivalent:
(i) d is a Jordan $(\alpha, \beta)^{*}$-derivation;
(ii) $d(x y x)=d(x) \alpha\left(y^{*} x^{*}\right)+\beta(x) d(y) \alpha\left(x^{*}\right)+\beta(x y) d(x)$ for all $x, y \in A$.

Proof. By the structure theorem of semisimple H^{*}-algebra (see [2]), every semisimple H^{*}-algebra is a semiprime *-ring and hence proof is complete by Theorem 1.

Corollary 4. Let A be a semisimple H^{*}-algebra. Let $d: A \rightarrow A$ be a linear mapping. Then the following conditions are equivalent:
(i) d is a Jordan *-derivation;
(ii) $d(x y x)=d(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)$ for all $x, y \in A$.

Acknowledgment. The author is greatly indebted to the referee for his valuable suggestions which improved the paper immensely.

References

[1] Ali, Shakir and Fošner, A., On Jordan $(\alpha, \beta)^{*}$-derivation in semiprime *-rings, International Journal Algebra 4(2010), 99-108.
[2] Ambrose, W., Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
[3] Brešar, M., Jordan mappings of semiprime rings, J. Algebra 127 (1989), 128-228.
[4] Brešar, M. and Vukman, J., On some additive mappings in rings with involution, Aequ. Math. 38 (1989), 178-185.
[5] Fošner, M. and Iliševic, D., On Jordan triple derivations and related mappings, Mediterr. J. Math. 5 (2008), 415-427.
[6] Iliševic, D., Quadratic functionals on modules over *-rings, Studia Sci. Math. Hungar. 42 (2005), 95-105.
[7] Šemrl, P., Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165.
[8] Vukman, J., A note on Jordan *-derivations in semiprime rings with involution, Int. Math. Forum. 13 (2006), 617-622. *-rings, Aequ. Math. 54 (1997), 31-43.

[^0]: This research is partially supported by the research grant from UGC (Grant No. $39-$ 37/2010(SR)), India.
 Key words: Semiprime *-ring, H^{*}-algebra, $(\alpha, \beta)^{*}$-derivation, Jordan $(\alpha, \beta)^{*}$-derivation, Jordan triple $*$-derivation and Jordan triple $(\alpha, \beta)^{*}$-derivation.
 2000 AMS Mathematics Subject Classification: 16N60, 16N10, 16W25, 47B47.

