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Abstract

In this paper we give an outline on the real part of energy spectrum
of non-Hermitian Hamiltonians Hα = p2 +(−q4 + iαq), where α is a real
number. It was showed that when α tends to −∞ some pairs of real
branches of the spectrum develop into the range of negative energy levels
and coalesce before turning into complex conjugate. This phenomenon
for cubic oscillators has been described by Delabaere and Trinh (J.Phys.
A: Math. Gen. 33 (2000), 8771-8796), and that motivates our present
study.

1. Introduction

Since its first formulation in the late 1990’s [2], PT -symmetric quantum me-
chanics whose main objects are non-Hermitian Hamiltonians but having PT -
symmetry has attracted much attention of many mathematicians and theoret-
ical physicians. Despite the lack of Hermiticity, many PT -symmetric Hamilto-
nians still maintain a number of basic characteristics in common with hermitian
Hamiltonians. These characteristics, which are necessary for the formulation of
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traditional quantum mechanics, consist of the reality, discreteness and (lower)
boundness of the spectrum [2, 3, 8, 5, 14, 17, 18, 21, 27].

Unfortunately, being PT -symmetric is not a sufficient condition for Hamil-
tonians to possess a real spectrum [4, 13, 16, 19]. Naturally, studying of the
structure of spectrum of certain PT -symmetric Hamiltonians is a preliminary
step in attempts to construct a conventional physical theory of PT -symmetric
quantum mechanics [9, 7, 22, 23, 32].

Among mentioned references, [16] supplied a rather complete picture about
the analysis structure of the spectrum of a family of Hamiltonians H = p2 +
i(q3 + αq) associated with (complex) cubic oscillators on the real line. It has
been shown (by using the exact WKB analysis) that, for α > 0 the whole
spectrum is real and consists of (infinitely many) determinations of a sole multi-
valued analytic function. While these determinations gradually coalesce in pairs
before splitting into complex conjugate ones when α tends to minus infinity.

Motivated by this work, our purpose in this article is to explore the real
part of spectrum of a similar family of Hamiltionians describing (complex)
quartic oscillators. More concretely, we consider a family of non-Hermitian
Hamiltonians

Hα = p2 + (−q4 + iαq) (1)

where p := −id/dq and α is a parameter, which is assumed to be real through
the paper.

This assumption furnishes HamiltoniansHα with a kind of symmetry, called
PT -symmetry, which is weaker than the Hermiticity, but still keeps spectra of
Hα unchanged under the complex conjugation. In general, a one-dimensional
Hamiltonian H = p2 + V (q) is said to be PT -symmetric if it commutes with
the composite operator PT , whose components are defined by the following
actions on the complex (p, q)-space

P :
{
q �→ −q
p �→ −p and T :

{
q �→ q
p �→ −p

As a matter of fact, the requirement for the commutability between H and the
combination PT amounts to forcing V (q) to verify the following equality

V (−q) = V (q)

Thus, that is the case of Hα for real α.
For our non-Hermitian Hamiltonian (1), as well as those of general form,

the space on which it acts may be no longer a Hilbert space. Instead of L2(R)
as usual, a certain space with an appropriate structure will be involved; for
example the space of square-integrable functions L2(γ), where γ is an endless
contour in the complex q-plane1. In particular, our study of the spectrum of

1For instance, furnishing an appropriate inner product for this kind of space is discussed
in [9, 7, 23]
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Hα will concern “bound states”, which are (complex) functions analytic and
square-integrable along a contour starting from and ending at infinity at the
phases −π/2∓ π/3.

By virtue of classical results on asymptotic analysis of ordinary differential
equations, this problem can be reduced to the complex Sturm-Liouville problem
for the (Schrödinger) equation

−φ′′(q) + (−q4 + iαq)φ(q) = Eφ(q) (2)

with boundary conditions

lim
q→∞.e−i5π/6

φ(q) = 0 and lim
q→∞.e−iπ/6

φ(q) = 0 (3)

This kind of singular boundary value problem is studied intensively in [28] by
virtue of Stokes multipliers.

Starting from a slightly different approach to this problem, our goal is to
describe the behavior of the (real) eigenvalues En(α) of the problem (2)(3) for
various α ∈ R. The method of investigation is based on the apparatus of “exact
WKB analysis” developed by Voros [31] and others [12, 15].

This paper is organized as follows: In section 2 we first give a brief summary
of recent results on eigenvalues of problem (2)(3). After recalling some neces-
sary ingredients for WKB calculus, we will state the main result for the case
of α > 0. The asymptotic behavior of En(α) for sufficiently negative α will be
the content of Section 3. Surprisingly, we found that the real part of spectrum
exhibits a crossing phenomenon similar to the cubic Hamiltonian. The picture
of spectrum is sketched out.

2. Asymptotic behavior of the spectrum at +∞
The boundary value problem associated with a second-order linear differential
equation with polynomial coefficients has been studied intensively in a pioneer
work of Sibuya [28]. By virtue of asymptotic estimates of solutions, solving
this kind of eigenvalue problems immediately amounts to exploring zeros of an
entire function, the so-called Stokes multiplier.

For our special case, we can transform Eq. (2) into the following

−Φ′′(X) + (X4 − αX + E)Φ(X) = 0, (4)

by using a simple change of variable

X := iq ; Φ(X) := ψ(q) . (5)

The boundary condition now reads

Φ(X) −→ 0, when
{
|X| −→ +∞
X ∈ S±1

(6)
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where
S±1 :=

{∣∣ arg(X) − ±π
3

∣∣ < π

6

}
.

Obviously, the eigenvalues of the problem (4)(6) are exactly those of the prob-
lem (2)(3).

Before going further, we now recall some of known facts on eigenvalues of the
problem (4)(6) by summarizing recent contributions on the subject [17, 27, 30].

Theorem 1. For any fixed α ≥ 0, the boundary value problem for (4) with
boundary condition (6) has infinitely many eigenvalues En(α). All of them are
simple, positive real and

En(α) =
( (2n− 1)π

2K

)4/3[
1 + νn

]
, for n→ +∞ (7)

where K :=
∫ +∞

0

(
√

1 + t4 − t2)dt > 0 and νn → 0.

Remark 2. The fact that eigenvalues En = En(α) are nothing but zeros of
the entire function C(α, E) implies that each En(α) is continuous on [0,+∞)
as functions of α. Therefore, the reality and positivity of the eigenvalues, as
well as the simpleness by its very formulation [30], are “open” properties. The
statements in Theorem 1 are then still valid for some α � 0. More precisely,
it could be extended at least to the bound α ≥ −2. In particular, for α = −2,
the lowest eigenvalue is exactly zero, to which the corresponding eigenfunction
is e

X3
3 (see [6, 27]).

Remark 3. It might be interesting to remark that the leading term of the
asymptotic behaviour of large eigenvalues given by (7) does not depend on α.

Our aim in this section is to describe asymptotic behavior of eigenvalues
En(α) when α tends to +∞ for each fixed n. This kind of problem for a cubic
model has been investigated intensively by using the exact WKB analysis [16].
This reference furnishes the global analysis structure of the spectrum not only
for real α, but also for any phrase of α in the complex plane. However, in this
paper, we limit our considerations only to the case of real α, which guarantees
the PT -symmetry property of Hamiltonian (1). We thus have

Theorem 4. For α > 0, we have

En(α) >
3

4 3
√

4
α4/3, for all n ∈ N (8)

and for each fixed n ∈ N, we get

En(α) ∝ 3
4 3
√

4
α4/3 + α1/3

∞∑
k=0

En, k

αk
, when α→ +∞ (9)
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where all En,k are real number and can be computed by the same algorithm in
[12]:

En,0 = 1/2 (1 + 2n)
√

6 3
√

2,
En,1 = 1/36

(
13 + 42n+ 42n2

)
3
√

2,

En,2 = − 1
1296

(
−1 + 89n+ 273n2 + 182n3

)√
6 3
√

2,

En,3 = − 1
69984

(
24517 + 84105n+ 115080n2 + 61950n3 + 30975n4

)
3
√

2, . . .

Further more, the series on the right-hand side of (9) is Borel resummable with
respect to α−1 and yields exactly the value of En(α) via Borel resummation.

The formulation of this statement is essentially originated in the results
in our earlier paper [16], while the idea for the proof is radically based on
Pham’s work [26]. In the latter reference, Pham has showed the universality
of polynomial models and derived a hierarchy, under which one can “see” a
model in a higher one. Roughly speaking, our quartic model will be reduced
to quadratic or cubic one.

Before proving the theorem, we recall some basic notions of the exact WKB
analysis. For a time-independent one-dimensional Schrödinger equation

−�
2 d

2ϕ

dq2
+ (V (q)− E)ϕ(q) = 0, (10)

the WKB method consists of finding formal solutions of the form

ϕ(q) =

( ∞∑
n=0

ϕn(q)�n

)
e

i
�

S(q), (11)

where S(q) is a solution of the equation

(S′(q))2 = E − V (q) =: p(q)2

To avoid ambiguity caused by the multivalence of S(q), we will define objects
locally on the Riemann surface of p(q), which is a 2-fold covering of the complex
q-plane eliminated turning points (i.e. zeros of V (q)−E). For the case V (q)−E
is a polynomial, formal solutions of the form (11) are in general resurgent
functions, analytically depending on the coefficients of V (q) − E if they are
”well normalized” by multiplying an appropriate factor in C[[�]]. This enables
us to treat these formal objects as true functions via the Borel-resummation.
For more details on these topics we refer the reader to [10, 11, 12, 15, 31].

Return to our point, we need to know how the altitude of solutions ϕ(q) in
(11) changes when q varies in the complex plane. For fixed � > 0 and a choice
of determination of p(q), this is controlled by the factor e

i
�

S(q). We call Stokes
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lines (resp. anti-Stokes lines) of Eq. (10) the curves in the q-plane emanating
from a turning point, along which 


(
i
�
S(q)

)
(resp. �

(
i
�
S(q)

)
) is constant.

Obviously, along a Stokes line that ends at infinity, the solution (11) vanishes
or increases fastest, according to the sign of the real part of i

�
S(q). A solution

ϕ(q) is said to be recessive (resp. dominant) along an endless Stokes line L if
it vanishes (resp. grows) exponentially when q tends to infinity along L. A set
of rules that allow to observe the alternation of dominance for solutions (11)
can be found in [12].

Proof of Theorem 4: Consider a value of α > 0, sufficiently large. By the
quasi-homogeneity, Eq. (2) can be reduced to the form of Schrödinger equation

−�
2 d

2ϕ

dq2
+ (−q4 + iq − Ê)ϕ(q) = 0, (12)

by introducing a (small) parameter � and changing its variables

� := α−1 > 0, q �→ q�−1/3, E := Ê�
−4/3, φ(q) �→ ϕ(q). (13)

The unique real critical value of potential −q4 + iq is Êcrit = 3
4 3√4

. Some
previous investigations show that we can also get much information about
energy levels of (12) by locating Ê only near the critical value Êcrit. Some
typical Stokes patterns for Ê � Êcrit are drawn in Fig. 1.
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Figure 1: Stokes patterns of Eq. (12) for Ê near Êcrit.

The “bound-states” problem for (12) can be solved geometrically as fol-
lows. Starting with a (non-null) solution ϕ(q) recessive along Stokes line Ll,
which is at the phase −5π/6 and bounds the domain containing the negative
imaginary half-axis, we make all possible analytic continuations of ϕ(q) to a
domain containing Lr (the same as Ll but at the phase −π/6, see Fig. 1), in
the manner as in [12]. Next, we eliminate all the obtained solutions which
are dominant along Lr. This manipulation usually reduces to a more analytic
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problem, which is to solve an equation (the so-called secular equation) and
known as the quantization condition.

In spirit of Pham’s work [26], by ignoring Stokes lines2 attached to two
turning points q3 and q4 on Fig. 1, we can see a Stokes pattern of quadratic
model, i.e. that of simple harmonic oscillator.

As a consequence, we infer that the quantization condition cannot occur for
Ê < Êcrit. Indeed, this case involves a pattern of Airy’s type, where Ll and
Lr can be considered as two consecutive Stokes lines. This implies the latter
estimates of the theorem3.

For the case Ê � Êcrit, the quantization condition can be established easily
by using the same reasonings in [12, Section III] (see also [16]). It is found
exactly of the (Bohr-Sommerfeld) form

s(Er , �) = n (14)

where s = s(Er , �) is a (formal) power series of �, the so-called monodromy
exponent of ϕ(q) (for details see [12]) at the double turning point q0 and Er is
the rescaled energy induced by locating Ê near the critical value

Ê := 3 3
√

2/8 + �Er. (15)

Since there is no bounded Stokes line attaching to the double turning point
q0, it turns out that s is an expansion Borel summable in the direction of
arg(1/�) = 0 and resurgent with respect to 1/�4. By theorem of implicit
(resurgent) functions [24, 15], Eq. (14) can be solved formally for each n ∈ N

under the form of Rayleigh-Schödinger series

En
r =

∞∑
k=0

En,k�
k (16)

where the coefficients En,k can be computed by the algorithm described in [12,
Section V]. A crucial point here is that series (16) is still Borel summable, so
we can “recover” En

r by the Borel resummation as the following

En
r = En

r (�) = En,0 +
∫ +∞

0

b(ξ)e−ξ/�dξ

where

b(ξ) :=
∞∑

k=1

En,k
ξk−1

Γ(k)

2These Stokes lines are not intervened in the quantization condition.
3This can be also verified directly by the same way as in [29, Thm. 2].
4In fact, s is resummable in a larger range by analytically continuing 1/� into the complex

plane. The possible obstacles are nothing but periods of action integral S(q) with respect to
cycles surrounding q0 and q3, q4 respectively.
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is Borel transform of (16). The fact that Borel sum of a series admits that
series itself as an asymptotic expansion completes the proof, up to getting back
the initial variables.

3. Picture of spectrum for α < 0.

We begin this section with a remark that when α varies in the negative half-axis,
the eigenvalue problem (4)(6) admits zero as one of its eigenvalues infinitely
many times (e.g. see [6]). For E = 0, the general solutions of (4) in fact can
be written out in terms of Whittaker functions (see [1]). We can see without
difficulty that there are infinitely many values of α < 0 such that Eq. (4) admits
solutions vanishing exponentially when X tends to infinity in both sectors S±.
For instance, for the sequence αk = −6k − 4 (k ∈ N) of values of α, the
mentioned Whittaker functions can be reduced to Laguerre polynomials so
that the eigenfunctions corresponding to the eigenvalue E = 0 are exactly of
the form of elementary functions

Φeigen(X)|α=−6k−4 = XeX3/3Qk(X)

where Qk is a polynomial of X3 of degree k. From this observation, we can
predict the appearance of negative eigenvalues when α takes negative values.

Similarly to the previous section, by rescaling variables

� := −α−1 > 0, q �→ q�−1/3, E := Ê�
−4/3 , (17)

we can reduce Eq. (2) to the form

−�
2 d

2ϕ

dq2
+ (−q4 − iq − Ê)ϕ(q) = 0 . (18)

The quantization condition for the bound states problem associated with Eq. (18)
is established by the same manner as above. Some typical Stokes patterns in
this case are drawn in Fig. 2.

We should notice that, there exists a value Ê0 of real Ê such that the
quantization condition for Eq. (18) cannot be occurred for Ê < Ê0. Our
numerical computation yields Ê0 � −0.79, corresponding to which the Stokes
pattern possesses two bounded Stokes lines (Fig. 2, part b)). As a matter of
fact, an Airy’s model will be involved for Ê < Ê0 and this explains why the
quantization condition is impossible (Fig. 2, part c)).

As a consequence, we can conclude that, for each fixed α < 0, all the
(negative) real eigenvalues are necessarily lower bounded:

En(α) > Ê0(−α)4/3.
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Figure 2: Some Stokes patterns for Eq. (18).

Now we consider a certain generic value Ê > Ê0. The corresponding Stokes
pattern is given in the part a) of Fig. 2. It can be seen homeomorphically, after
erasing three Stokes lines attached to q4, that the Stokes pattern exhibits a
cubic model (Fig. 3, the left part), which is investigated in detail in [16].

By the same arguments as in the former section, the quantization condition
for bound states requires cancelling all the solutions which become dominant
along Lr after being extended analytically from another that is recessive along
Stokes line Ll. With the convenience of using notations in [16], the secular
equation simply reads

1− 2eU sin(πs) = 0 , (19)

where U and s are resurgent Borel-resummable expansions of � (depending
analytically on Ê, even regularly in the sense of [15]) and defined by

U = U(Ê, �) =
i

2�

∫
γ∗+γ

p(q, Ê)dq + O(�)

s = s(Ê, �) = −1
2

+
1

2�π

∫
γ∗−γ

p(q, Ê)dq +O(�)
(20)

The cycles γ and γ∗ in these formulae (Fig. 3) are mutually symmetric under
the real conjugation q ←→ −q. This implies the reality of U and s.

Our next step is to solve Eq. (19), then try to translate the results into
(E, α)-space by inverting the following consecutive maps

(E, α) �→ (Ê, �) �→ (U, s) . (21)

This can be done very easily by repeating the arguments and computations in
[16]. We should notice that the solutions U and s in (19) can be simultaneously
real only for U ≥ − ln 2. Therefore, for α � −1 (i.e. � � 0) and U � − ln 2 ,
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Figure 3: Real trace of spectrum for large α > 0 and near crossing points for
α < 0.

we can deduce from (20) that

i

∫
γ∗+γ

p(q, Ê)dq � 0 . (22)

This requirement gives Ê � 0. We thus can see that when α → −∞, the real
eigenvalues En(α) in fact locate much higher than the curve E = Ê0(−α)4/3

in the (E, α)-plane.
The left part of Figure 4 illustrates some of eigenvalues En(α) near their

“crossing” points, where they collapse in pairs before splitting into complex
conjugates. These curves are nothing but the reciprocal image of real solutions
of Eq. (19) via the sequence (21). Numerical computation has been done at
the value Ê = −0.03 by the same method as in [16]. It should notice that
for Ê = 0, the left hand side in (22) is exactly zero5. The analytic structure
of E(α) can be investigated similarly as in [16], but it goes further than our
considerations in this text. To summarize, we can state the following

Theorem 5. For α varies decreasingly from 0 to −∞, the eigenvalues En(α)
gradually develop into the range of E < 0 in the (E, α)-plane and collapse in
pairs at points α[n/2] < 0 (known as their square-root branch points) before
splitting into complex conjugates in the complex E-plane.

Remark 6. We can also estimate values of α[n/2] by the same method as in
[16, Theorem 4.2]. Their distribution is apparently regular at large indexes

αm = −(Cm+D) +O(m−1)

5The corresponding anti-Stokes pattern exhibits bounded anti-Stokes lines [16, Fig.11].
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Figure 4: Real trace of spectrum for large α > 0 and near crossing points for
α < 0.

where C > 0, D are computable constants depending only on the range of
considered α. The first value in our case is α0 = −4.145245086.

Remark 7. From the very formulation, our description on the spectrum does
not include the part corresponding to small |α|. However, we believe that no
singular behavior occurs in this gap. Here the dotted lines on Fig. 4 are only
for illustration.

4. Conclusion

In this paper, we have explored the shape of the real energy spectrum of PT -
symmetric Hamiltonians Hα associated with a family of complex quartic oscil-
lators. It turns out that the real trace of the spectrum exhibits many features
similar to those in the cubic case. The most interesting common property in
both cases is that the real spectrum consists of infinitely many curves of a sole
multivalent analytic function of α, growing like a power of α � 0 and devel-
oping into complex conjugates in pairs when α tends to negative infinity. Yet
a generalization for higher models was not mentioned and can be investigated
by the same methods as in this paper.

Our analysis is essentially to reduce our model to well-known ones according
to Pham’s point of view on the hierarchy of model [25, 26]. This reduction,
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together with the applicability of the semiclassical asymptotic analysis, may
be also useful for the studying of the spectrum of Hamiltonians of the more
general type p2 − (iq)m + iαq. Of course, for this kind of Hamiltonians, the
triple (or higher) confluence of turning points does not appear so that the exact
WKB methods in [12] are still applicable.

Even though there are some gaps in our understanding of the global struc-
ture, our study, together with earlier works [4, 15, 16], once again strengthens
the effectiveness of the exact WKB analysis in investigating of the asymptotic
behavior of the energy spectrum of this kind of Hamiltonians.
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Ann. Inst. Henri Poincaré, Sect. A, Vol. 71, No 1, 1-94 (1999).

[16] E. Delabaere, D.T. Trinh, Spectral analysis of the complex cubic oscillator. J.Phys. A:
Math. Gen. 33 (2000), 8771-8796.

[17] P. Dorey, C. Dunning, R. Tateo, Spectral equivalences, Bethe ansatz equations, and
reality properties in PT -symmetric quantum mechanics. J. Phys. A 34 (2001), no. 28,
5679–5704.

[18] F.M. Fernández, R. Guardiola, J. Ros, M. Znojil, A family of complex potentials with
real spectrum. J. Phys. A 32, No. 17, 3105-3116 (1999).

[19] C.R. Handy, Generating converging bounds to the (complex) discrete states of the P 2 +
iX3 + iαX Hamiltonian. J. Phys. A 34 (2001), no. 24, 5065–5081

[20] G.S. Japaridze, Space of state vectors in PT symmetrical quantum mechanics J. Phys.
A 35 (2002), no. 7, 1709–1718.
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