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Abstract

In this paper we state the basic results on Gr-functors between Gr-
categories. They allow one to prove precise theorems on the classification
of (braided) categorical groups and their (braided) monoidal functors.
We also obtain some well-known results in algebra.

Introduction

Monoidal categories (symmetric monoidal categories) can be “refined” to be-
come categories with (abelian) group structure if the objects are all invertible
(see [8, 14]). When the underlying category is a groupoid, we obtain the no-
tion of (symmetric) categorical group, or Gr-category (Picard category). The
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structures of Gr-categories, Picard categories were dealt with by H. X. Sinh in
[15]. Braided categorical groups were originally introduced by A. Joyal and R.
Street in [7] as extensions of Picard categories. The category BCG of braided
categorical groups and braided monoidal functors was classified by the category
Quad of quadratic functions. These classification theorems were applied and
extended in works on (braided) graded categorical groups [3, 5], in those on
fibred categorical groups [2], and they led to many noticeable results. However,
reviewing even the most basic theory of monoidal categories is interesting and
useful for the further studies.

The classification of Gr-categories whose pre-stick of type (Π, A) was done
by H. X. Sinh in [15], but her thesis was never published, and now quite hard
to find. Also, while the results on classification of Gr-categories, braided Gr-
categories were greatly clarified by A. Joyal and R. Street in [6], this section
was omitted from the final published version [7]. J. Baez and A. Lauda [1]
summarized in detail the results on Gr-categories, but they did not mention the
classification. Our first aim is to fill this gap. In concrete, we show the results
on Gr-functors and use them as a common technique to state classification
theorems for categorical groups, braided categorical groups. The second aim is
to show some algebraic applications of the obstruction theory of Gr-functors.

The plan of this paper is, briefly, as follows. In the first section we review the
construction of a Gr-category of type (Π, A, h), a reduction of a Gr-category,
due to H. X. Sinh [15].

In the second section we prove that each Gr-functor between reduced Gr-
categories is one of type (ϕ, f). Then, we introduce the notion of obstruction
of a functor of type (ϕ, f) and classify up to cohomology all these functors.

The next section is devoted to showing the precise classification theorem
of the category of Gr-categories and Gr-functors, a fuller version of classifica-
tion theorem of H. X. Sinh. The case of braided Gr-categories follows as a
consequence.

Section 4 is dedicated to stating two applications of the obstruction theory
of Gr-functors. Firstly, we define the Gr-category of an abstract kernel as an
example for general theory. This leads to an interesting consequence: a Gr-
category can be transformed into a strict one (H. X. Sinh proved this result in
a completely different way [16]).

Secondly, we also use the Gr-category of an abstract kernel to classify group
extensions by Gr-functors. Then we obtain long-known results on the group
extension problem.

We should remark that Proposition 5 is used to introduce a new proof of the
Classification Theorem for graded Gr-categories [12] by the method of factor
sets, and a version of Proposition 5 for Ann-functors [11] is used to classify
Ann-functors.
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1 Preliminaries

We recall briefly some basic facts and results about monoidal categories.
A monoidal category (G,⊗, I, a, l, r) is a category G together with a tensor

product ⊗ : G × G → G, an unit object I, and natural isomorphisms

aX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z,

lX : I ⊗X → X , rX : X ⊗ I → X,

(called, respectively, the associativity and the left-unit, and the right-unit con-
straints). These constraints satisfy the pentagon axiom

(aX,Y,Z ⊗ idT ) aX,Y⊗Z,T (idX ⊗ aY,Z,T ) = aX⊗Y,Z,T aX,Y,Z⊗T , (1)

and the triangle axiom

idX ⊗ lY = (rX ⊗ idY )aX,I,Y . (2)

A monoidal category is strict if the associativity constraint a and the unit
constraints l, r are all identities.

Let G = (G,⊗, I, a, l, r) and G′ = (G′,⊗, I′, a′, l′, r′) be monoidal cate-
gories. A monoidal functor from G to G′, (F, F̃ , F∗), consists of a functor
F : G → G′, an isomorphism F∗ : I′ → FI, and natural isomorphisms

F̃X,Y : FX ⊗ FY → F (X ⊗ Y )

such that for all X, Y, Z ∈ G, coherence conditions hold

F (aX,Y,Z) ◦ F̃X,Y Z ◦ (idFX ⊗ F̃Y,Z) = F̃X⊗Y,Z ◦ (F̃X,Y ⊗ idFZ ) ◦ a′
FX,FY,FZ ,

r′FX = F (rX) ◦ F̃X,I ◦ (id ⊗ F∗) : FX ⊗ I′ → FX,

l′FX = F (lX) ◦ F̃I,X ◦ (F∗ ⊗ id) : I′ ⊗ FX → FX.

A natural monoidal equivalence or a homotopy α : (F, F̃ , F∗) → (G, G̃, G∗)
between monoidal functors from G to G′ is a natural equivalence α : F → G
such that

G∗ = αI ◦ F∗,

αX⊗Y ◦ F̃X,Y = G̃X,Y ◦ (αX ⊗ αY ).

A monoidal equivalence between monoidal categories is a monoidal functor
F : G → G′ such that there exists a monoidal functor G : G′ → G and homo-
topies α : G.F → idG, β : F.G → idG′ . (F, F̃ , F∗) is a monoidal equivalence if
and only if F is an equivalence.

A Gr-category is a monoidal category in which every object is invertible and
every morphism is an isomorphism. If (F, F̃ , F∗) is a monoidal functor between
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Gr-categories, it is called a Gr-functor. Then the isomorphism F∗ : I′ → FI
can be deduced from F and F̃ .

Let us recall some known results on Gr-categories (see [15]). Each Gr-
category G is equivalent to a Gr-category of type (Π, A) which can be described
as follows. The set π0G of isomorphism classes of the objects in G is a group
where the operation is induced by the tensor product in G, and the set π1G of
automorphisms of the unit object I is an abelian group where the operation,
denoted by +, is composition. Moreover, π1G is a π0G-module with the action

su = γ−1
X δX(u), X ∈ s, s ∈ π0G, u ∈ π1G,

where γX , δX are respectively defined by the following commutative diagrams

X
γX (u)−−−−→ X

lX

�⏐⏐ �⏐⏐lX

I ⊗X
u⊗id−−−−→ I ⊗X,

X
δX (u)−−−−→ X

rX

�⏐⏐ �⏐⏐rX

X ⊗ I
id⊗u−−−−→ X ⊗ I.

The reduced Gr-category SG of G is a category whose objects are elements
of π0G and whose morphisms are automorphisms (s, u) : s → s, where s ∈
π0G, u ∈ π1G. The composition of two morphisms is induced by the addition
in π1G

(s, u).(s, v) = (s, u + v).

The category SG is equivalent to G by canonical equivalences constructed as
follows. For each s = [X] ∈ π0G, choose a representative Xs ∈ G such that
X1 = I, and for each X ∈ s, choose an isomorphism iX : Xs → X such that
iXs = idXs . For the set of representatives, we obtain two functors

⎧⎪⎨
⎪⎩
G : G → SG,

G(X) = [X] = s,

G(X
f→ Y ) = (s, γ−1

Xs
(i−1
Y fiX )),

⎧⎪⎨
⎪⎩
H : SG → G,

H(s) = Xs,

H(s, u) = γXs (u).
(3)

Two functors G and H are categorical equivalences by natural transforma-
tions

α = (iX) : HG ∼= idG, β = id : GH ∼= idSG
.

They are called canonical equivalences.
Via the structure transport (see [12, 15]) by the quadruple (G,H, α, β), SG

becomes a Gr-category together with the following operations

s⊗ t = st, s, t ∈ π0G,

(s, u) ⊗ (t, v) = (st, u+ sv), u, v ∈ π1G.
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The set of representatives (Xs, iX) is a stick of the Gr-category G whenever

iI⊗Xs = lXs , iXs⊗I = rXs . (4)

The unit constraints of the Gr-category SG are therefore strict, and its asso-
ciativity constraint is a normalized 3-cocycle h ∈ Z3(π0G, π1G). Further, the
equivalences G, H together with natural isomorphisms

G̃X,Y = G(iX ⊗ iY ), H̃s,t = i−1
Xs⊗Xt

(5)

become Gr-equivalences.
The Gr-category SG is a reduction of the Gr-category G. SG is said to be of

type (Π, A, h), or of type (Π, A) if π0G, π1G are replaced with a group Π and a
Π-module A, respectively.

2 Classification of Gr-functors of type (ϕ, f)

In this section, we show that each Gr-functor (F, F̃ ) : G → G
′

induces a
Gr-functor SF between the reduced Gr-categories. This allows us to study the
existence of Gr-functors and to classify all these functors between Gr-categories
of type (Π, A). The following proposition appeared in many works related to
categorical groups.

Proposition 1 ([15]). Let (F, F̃ ) : G → G′ be a Gr-functor. Then, (F, F̃ )
induces a pair of group homomorphisms

F0 : π0G → π0G
′
, [X] �→ [FX],

F1 : π1G → π1G
′
, u �→ γ−1

FI (Fu)

satisfying F1(su) = F0(s)F1(u).

Our first result is to strengthen Proposition 1 by Proposition 4 thanks to the
fact that each Gr-functor (F, F̃ ) : G → G′ induces a Gr-functor SF : SG → SG′ .
We need two following lemmas

Lemma 2. Let G,G′ be two ⊗-categories with, respectively, unit constraints
(I, l, r), (I′, l′, r′), and (F, F̃ , F∗) : G → G′ be an ⊗-functor which is compatible
with the unit constraints. Then, the following diagram commutes

.

F I F I

I′ I′.

�γ
F I

(u)

�
F∗

�u

�
F∗
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It follows that
γ−1
FI (Fu) = F−1

∗ F (u)F∗,

i.e., the definitions of the map π1F in [3] and of the map F1 in Proposition 1
coincide.

Proof. Clearly, γI′ (u) = u. Moreover, the family (γX′ (u)), X′ ∈ G′, is an
endomorphism of the identity functor idG′ . So the above diagram commutes.

The final statement is deduced from the above commutative diagram in
which u is replaced by γ−1

FI (Fu). �

Lemma 3. Under the hypothesis of Lemma 2, we have

FγX (u) = γF X (γ−1
F I
Fu).

Proof. Consider the following diagram

I′ ⊗ FX FI ⊗ FX
F∗⊗id

��

I′ ⊗ FX

I′ ⊗ FX

γ−1
F IFu⊗id

��

I′ ⊗ FX FI ⊗ FX
F∗⊗id �� FI ⊗ FX

FI ⊗ FX

Fu⊗id

��
FI ⊗ FX F (I ⊗X)F̃ ��

FI ⊗ FX

FI ⊗ FX

FI ⊗ FX F (I ⊗X)
F̃

�� F (I ⊗X)

F (I ⊗X)

F (u⊗id)

��
F (I ⊗X) FX

F (lX)
��

F (I ⊗X)

F (I ⊗X)

F (I ⊗X) FX
F (lX) �� FX

FX

FγX (u)

��

I′ ⊗ FX

l′

FX
��

I′ ⊗ FX

l′

FX��

(1) (2) (3)

(5)

(4)

In this diagram, the regions (4) and (5) commute thanks to the compatibility
of the functor (F, F̃ ) with the unit constraints. The region (3) commutes due
to the definition of γX (taking images via F ), the region (1) commutes by
Lemma 2. The commutativity of the region (2) follows from the naturality of
the isomorphism F̃ . Therefore, the outer perimeter commutes, i.e., FγX(u) =
γFX

(
γ−1
FIFu

)
. �

Remark on notations: Hereafter, if there is no extra words, S and S′ are
referred to Gr-categories of type (Π, A, h) and (Π′, A′, h′), respectively.

A functor F : S → S′ is called a functor of type (ϕ, f) if

F (x) = ϕ(x), F (x, u) = (ϕ(x), f(u)), (6)

where ϕ : Π → Π′, f : A → A′ are group homomorphisms satisfying f(xa) =
ϕ(x)f(a) for x ∈ Π, a ∈ A.

Proposition 4. Each Gr-functor (F, F̃ ) : G → G′ induces a Gr-functor SF :
SG → SG′ of type (ϕ, f), ϕ = F0, f = F1. Further,

SF = G′FH,



N. T. Quang, N. T. Thuy, P. T. Cuc 169

where H,G′ are canonical equivalences.

Proof. Let K = G′FH be the composition functor. One can verify that K(s) =
F0(s), for s ∈ π0G. We now prove that K(s, u) = (F0(s), F1(u)) for any
morphism u : I → I. We have

K(s, u) = G′FH(s, u) = G′(FγXs (u)).

Since H ′G′ � idG′ by the natural equivalence α′ = (i′X′ ), the following
diagram commutes (note that X′

s = H ′G′FXs)

X′
s′

i′−−−−→ FXs

H′G′FγXs (u)

⏐⏐� ⏐⏐�FγXs (u)

X′
s′

i′−−−−→ FXs.

According to Lemma 3, we have

FγXs(u) = γFXs (γ−1
FI F (u)).

Besides, since the family (γX′ ) is a natural equivalence of the identity func-
tor idG′ , the following diagram commutes

X′
s′

i′−−−−→ FXs

γX′
s
(γ−1

F IFu)

⏐⏐� ⏐⏐�γF Xs (γ−1
F IF (u))

X′
s′

i′−−−−→ FXs.

Hence, H ′G′FγXs(u) = γX′
s

(
γ−1
FIF (u)

)
. By the definition of H ′, we have

G′FγXs(u) = (F0(s), γ−1
FIF (u)) = (F0(s), F1(u)).

This means K = SF . �

We now describe Gr-functors between Gr-categories of type (Π, A).

Proposition 5. Every Gr-functor (F, F̃) : S → S′ is a functor of type (ϕ, f).

Proof. For x, y ∈ Π, F̃x,y : Fx⊗Fy→ F (x⊗ y) is a morphism in S′. It follows
that Fx.Fy = F (xy). So if one sets ϕ(x) = Fx, then ϕ : Π → Π′ is a group
homomorphism.

We write F (x, a) = (ϕ(x), fx(a)). Since F is a functor, we have

F ((x, a).(x, b)) = F (x, a).F (x, b).

It follows that
fx(a+ b) = fx(a) + fx(b).
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Therefore, fx : A → A′ is a group homomorphism for each x ∈ Π. Besides,
since (F, F̃ ) is an ⊗-functor, the following diagram commutes

Fx.Fy
F̃−−−−→ F (xy)

Fu⊗Fv
⏐⏐� ⏐⏐�F (u⊗v)

Fx.Fy
F̃−−−−→ F (xy),

for all u = (x, a), v = (y, b). Hence, we have

F (u⊗ v) = Fu⊗ Fv

⇔ fxy(a+ xb) = fx(a) + ϕ(x).fy(b)

⇔ fxy(a) + fxy(xb) = fx(a) + ϕ(x).fy(b). (7)

In the relation (7), x = 1 yields fy(a) = f1(a). Hence, fy = f1 for all y ∈ Π.
Write fy = f and use (7), we obtain f(xb) = ϕ(x).f(b). �

Note that if Π′-module A′ is regarded as a Π-module with the action xa′ =
ϕ(x).a′, then f : A→ A′ is a homomorphism of Π-modules. Since

F̃x,y = (F (xy), gF (x, y)) : Fx.Fy→ F (xy),

where gF : Π2 → A′ is a function, gF is said to be associated to F̃ . The
compatibility of (F, F̃ ) with the associativity constraint leads to the relation

ϕ∗h′ − f∗h = ∂(gF ),

where

(f∗h)(x, y, z) = f(h(x, y, z)),
(ϕ∗h′)(x, y, z) = h′(ϕx, ϕy, ϕz).

One can see that two Gr-functors (F, F̃ ), (F ′, F̃ ′) : S → S′ are homotopic if and
only if F ′ = F , i.e., they are of the same type (ϕ, f), and there is a function
t : Π → A′ such that gF ′ = gF + ∂t.

We refer to
Hom(ϕ,f)[S, S′].

as the set of homotopy classes of Gr-functors of type (ϕ, f) from S to S.
In order to find the sufficient condition to make a functor of type (ϕ, f)

become a Gr-functor, we introduce the notion of the obstruction as in the case
of Ann-functors (see [11]). If h and h′ are associativity constraints of Gr-
categories S and S′, respectively, and F : S → S′ is a functor of type (ϕ, f),
then the function

k = ϕ∗h′ − f∗h (8)

is called an obstruction of F.
Keeping in mind that S = (Π, A, h), S′ = (Π′, A′, h′), we have
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Theorem 6. The functor F : S → S′ of type (ϕ, f) induces a Gr-functor if
and only if its obstruction [k] = 0 in H3(Π, A′). Then, there exist bijections

Hom(ϕ,f)[S, S′] ↔ H2(Π, A′), (9)

Aut(F ) ↔ Z1(Π, A′).

Proof. If (F, F̃ ) : S → S′ is a Gr-functor, then (F, F̃ ) = (ϕ, f, gF ), where

ϕ∗h′ − f∗h = ∂(gF ) ∈ B3(Π, A′).

Therefore, [ϕ∗h′] − [f∗h] = 0 in H3(Π, A′).
Conversely, if [ϕ∗h′]− [f∗h] = 0, then there exists a 2-cochain g ∈ Z2(Π, A′)

such that ϕ∗h′ − f∗h = ∂g. Take F̃ to be associated to g, one can see that
(F, F̃ ) is a Gr-functor.

i) If (F, F̃ ) : S → S′ is a Gr-functor, then F = (ϕ, f, gF ). Let gF be fixed.
Now if

(K, K̃) : S → S
′

is a Gr-functor of type (ϕ, f), then ∂(gF ) = ϕ∗h′−f∗h = ∂(gK ). It follows that
gF − gK is a 2-cocycle. Consider the correspondence

Φ : [(K, K̃)] �→ [gF − gK ]

between the set of equivalent classes of Gr-functors of type (ϕ, f) from S to S′

and the group H2(Π, A′).
First, we show that the above correspondence is a map. Indeed, let

(K′, K̃′) : S → S
′

be a Gr-functor and u : K → K′ be a homotopy. Then K,K′ are of the same
type (ϕ, f) and gK′ = gK + ∂t where gK , gK′ are, respectively, associated to
K̃, K̃′, i.e., [gF − gK′ ] = [gF − gK ] ∈ H2(Π, A′).

Furthermore, Φ is an injection.
Finally, we show that the correspondence Φ is a surjection. Assume that g

is an arbitrary 2-cocycle, we have

∂(gF − g) = ∂gF − ∂g = ∂g = ϕ∗h′ − f∗h.

Then, there exists a Gr-functor

(K, K̃) : S → S
′

of type (ϕ, f) where natural isomorphisms K̃ = (•, gF−g). So Φ is a surjection.
ii) Let F = (F, F̃ ) : S → S′ be a Gr-functor and t ∈ Aut(F ). Then, the equality
gF = gF + ∂t implies that ∂t = 0, i.e., t ∈ Z1(Π, A′). �
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3 Classification of (braided) Gr-categories

Each Gr-category G has two first invariants as the group π0G and π0G-module
π1G. The set of Gr-categories having the same two first invariants was classified
by the cohomology group H3(π0G, π1G) (see [15]). Now, we will state the
precise theorem on classification of Gr-categories and Gr-functors.

Let CG be a category whose objects are Gr-categories, and whose mor-
phisms are monoidal functors between them. We determine the category
H3

Gr whose objects are triples (Π, A, [h]) where [h] ∈ H3(Π, A). A morphism
(ϕ, f) : (Π, A, [h]) → (Π′, A′, [h′]) in H3

Gr is a pair (ϕ, f) such that there is a
function g : Π2 → A′ so that (ϕ, f, g) : (Π, A, h) → (Π′, A′, h′) is a Gr-functor,
i.e., [ϕ∗h′] = [f∗h] ∈ H3(Π, A′). The composition in H3

Gr is given by

(ϕ′, f ′) ◦ (ϕ, f) = (ϕ′ϕ, f ′f).

One can observe that two Gr-functors F, F ′ : G → G′ are homotopic if and
only if Fi = F ′

i , i = 0, 1, and [gF ] = [gF ′ ]. Denote the set of homotopy classes
of Gr-functors G → G′ which induce the same pair (ϕ, f) by

Hom(ϕ,f)[G,G′].

We now state a version of Proposition 8 [6], in which the classifying functor
d is not simply “inverse” of that in Proposition 8 [6], but it contains more
information in this classification.

Theorem 7 (Classification Theorem). There is a classifying functor

d : CG → H3
Gr

G �→ (π0G, π1G, [hG])
(F, F̃ ) �→ (F0, F1)

which has the following properties
i) dF is an isomorphism if and only if F is an equivalence.
ii) d is surjective on objects.
iii) d is full, but not faithful. For (ϕ, f) : dG → dG′, there is a bijection

d : Hom(ϕ,f)[G,G′] → H2(π0G, π1G
′). (10)

Proof. In the Gr-category G, for each stick (Xs, iX) we can construct a reduced
Gr-category (π0G, π1G, h). If the choice of stick is modified, then the 3-cocycle
h changes to a cohomologous 3-cocycle h′. Therefore, G determines a unique
element [h] ∈ H3(π0G, π1G). This shows that d is a map on objects.

For Gr-functors
G

F→ G
′ F ′→ G

′′,
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one can see that (F ′F )0 = F ′
0F0. Since (F ′F )∗ is the composition

I′′
F ′

∗→ F ′I′
F ′(F∗)→ F ′FI,

then for u ∈ Aut(I) we have

(F ′F )1u = (F ′F )−1
∗ (F ′F )u(F ′F )∗

= F ′−1
∗ F ′(F−1

∗ )F ′FuF ′(F∗)F ′
∗

= F ′−1
∗ F ′(F1u)F ′

∗ = F ′
1(F1u).

That is,
d(F ′ ◦ F ) = (dF ′) ◦ (dF ).

Clearly, d(idG) = iddG. Therefore, d is a functor.
i) According to Proposition 1.
ii) If (Π, A, [h]) is an object of H3

Gr, S = (Π, A, h) is a Gr-category of type
(Π, A) and obviously dS = (Π, A, [h]) .
iii) Let (ϕ, f) be a morphism in HomH3

Gr
(dG, dG′). Then, there exists a func-

tion g : (π0G)2 → π1G
′ such that

ϕ∗hG′ = f∗hG + ∂g.

Hence, by Theorem 6,

K = (ϕ, f, g) : (π0G, π1G, hG) → (π0G
′, π1G

′, hG′)

is a Gr-functor. Then, the composition Gr-functor F = H ′KG : G → G′

induces dF = (ϕ, f). This shows that the functor d is full.
To prove that (10) is a bijection, we prove the correspondence

Ω : Hom(ϕ,f)[G,G′]→Hom(ϕ,f)[SG, SG′ ] (11)

[F ] �→ [SF ]

is a bijection.
Clearly, if F, F ′ : G → G′ are homotopic, then the induced Gr-functors

SF , SF ′ : SG → SG′ are homotopic. Conversely, if F, F ′ are Gr-functors such
that SF , SF ′ are homotopic, then the compositions E = H ′(SF )G and E′ =
H ′(SF ′ )G are homotopic, where H ′, G are canonical Gr-equivalences. The Gr-
functors E and E′ are homotopic to F and F ′, respectively. Hence, F and F ′

are homotopic. This shows that Ω is an injection.
Now, if K = (ϕ, f, g) : SG → SG′ is a Gr-functor, then the composition

F = H ′KG : G → G
′
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is a Gr-functor satisfying SF = K, i.e., Ω is a surjection. Finally, the bijection
(10) is the composition of (9) and (11). �

By Theorem 7, one can simplify the problem of classifying of Gr-categories
up to equivalence by the one of Gr-categories having the same (up to an iso-
morphism) two first invariants. This was done by H. X. Sinh [15]. However,
to make it easy for the readers we will state this result in detail based on the
above data.

Let Π be a group and A be a Π-module. We say that a Gr-category G has
a pre-stick of type (Π, A) if there exists a pair of group isomorphisms

p : Π → π0G, q : A→ π1G

which are compatible with the action of modules

q(su) = p(s)q(u),

where s ∈ Π, u ∈ A. The pair ε = (p, q) is called a pre-stick of type (Π, A) to
the Gr-category G.

A morphism between two Gr-categories G,G′ whose pre-sticks are of type
(Π, A) (with, respectively, the pre-sticks ε = (p, q), ε′ = (p′, q′)) is a Gr-functor
(F, F̃ ) : G → G′ such that the following diagrams commute

π0G π0G
′ π1G π1G

′

Π A

�F0 �F1

�
���
p �

��
p′ �

���
q �

��
q′

where F0, F1 are two homomorphisms induced by (F, F̃ ).
Clearly, it follows from the definition that F0, F1 are isomorphisms and

therefore F is an equivalence. Denote by

CG[Π, A]

the set of equivalence classes of Gr-categories whose pre-sticks are of type
(Π, A).

Theorem 8 ([15]). There exists a bijection

Γ : CG[Π, A] → H3(Π, A),

[G] �→ q−1
∗ p∗[hG].

Proof. By Theorem 7 , each Gr-category G determines uniquely an element
[hG] ∈ H3(π0G, π1G), and therefore

ε[hG] = q−1
∗ p∗[hG] ∈ H3(Π, A).
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Now, if F : G → G′ is a morphism between two Gr-categories whose pre-sticks
of type (Π, A), then the induced Gr-functor SF = (ϕ, f, gF ) satisfies

ϕ∗[hG′] = f∗[hG].

It follows that
ε′[hG′ ] = ε[hG].

This means Γ is a map. Moreover, it is an injection. Indeed, suppose that
Γ[G] = Γ[G′], we have

ε′(hG′) − ε(hG) = ∂g.

Therefore, there exists a Gr-functor J of type (id, id) from J = (Π, A, ε(hG)) to
J′ = (Π, A, ε′(hG′)). The composition

G
G→ SG

ε−1→ J
J→ J

′ ε′→ SG′
H′→ G

′

implies [G] = [G′], and Γ is an injection. Obviously, Γ is surjective. �

We now move to the case of braided Gr-categories.
A Gr-category B is called a braided Gr-category if there is a braiding c, i.e.,

natural isomorphisms c = cX,Y : X ⊗ Y → Y ⊗X, which is compatible with
a, l, r in the sense of satisfying the following coherence conditions:

(idY ⊗ cX,Z)aY,X,Z(cX,Y ⊗ idZ) = aY,Z,XcX,Y ⊗ZaX,Y,Z, (12)

(cX,Z ⊗ idY )a−1
X,Z,Y (idX ⊗ cY,Z) = a−1

Z,X,Y cX⊗Y,Za−1
X,Y,Z. (13)

If the braiding c satisfies cX,Y ·cY,X = id then braided Gr-categories are called
symmetric categorical groups, or Picard categories. Then the relations (13) and
(12) coincide.

If (B, c) and (B′, c′) are braided Gr-categories, then a braided Gr-functor
(F, F̃ ) : B → B′ is a Gr-functor which is compatible with the braidings c, c′, i.
e., the following diagram commutes

F (X ⊗ Y ) F (Y ⊗X)

FX ⊗ FY FY ⊗ FX.

�F (c)

�c′

�
F̃

�
F̃

If B is a braided Gr-category with the braiding c, then π0B is an abelian
group and it acts trivially on π1B. Then the reduced Gr-category SB becomes
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a braided Gr-category with the induced braiding c∗ = (•, η) given by the
following commutative diagram

Xr ⊗Xs Xrs

Xs ⊗Xr Xsr.

�iXr⊗Xs

�
c

�
γ

Xrs
(η(r,s))

�iXs⊗Xr

Moreover, (H, H̃) and (G, G̃) defined by (3) and by (5) are then braided Gr-
equivalences.

For the reduced braided Gr-category SB, the relations (1), (12), (13) become

h(y, z, t) − h(x+ y, z, t) + h(x, y+ z, t) − h(x, y, z + t) + h(x, y, z) = 0,

h(x, y, z) − h(y, x, z) + h(y, z, x) + η(x, y + z) − η(x, y) − η(x, z) = 0,

h(x, y, z) − h(x, z, y) + h(z, x, y) − η(x + y, z) + η(y, z) + η(x, z) = 0,

where the functions h, η are associated to the associativity, braiding constraints
of SB, respectively. By the compatibility of the associativity constraint with
the strict unit ones of SB, h, η are the “normalized” functions. Therefore, the
pair (h, η) associated to the associativity and braiding constraints of SB is an
abelian 3-cocycle (in the sense of Mac Lane-Eilenberg [4, 9]).

In B, choose the stick (X′
i, i

′
X) instead of (Xi, iX) (see (4)) then the corre-

sponding 3-cocycle (h′, η′) satisfies

(h′, η′) − (h, η) = δg,

where 3-coboundary δg is given by

δg(x, y, z) = g(y, z) − g(x + y, z) + g(x, y+ z) − g(x, y),

δg(x, y) = g(x, y) − g(y, x).

This mean each braided Gr-category B determines uniquely an element [(h, η)] ∈
H3
ab(π0B, π1B).

It follows from Proposition 5 that

Corollary 9. Each braided Gr-functor (F, F̃ ) : S → S′ is a triple (ϕ, f, g),
where

ϕ∗(h′, η′) − f∗(h, η) = ∂ab(g).

Based on the above data, let
H3

BGr

denote a category whose objects are triples (M,N, [(h, η)]), where [(h, η)] ∈
H3
ab(M,N). A morphism (ϕ, f) : (M,N, [(h, η)]) → (M ′, N ′, [(h′, η′)]) in H3

BGr
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is a pair (ϕ, f) such that there is a function g : M2 → N ′ so that (ϕ, f, g) :
(M,N, (h, η)) → (M ′, N ′, (h′, η′)) is a braided monoidal functor, i.e., [ϕ∗(h′, η′)] =
[f∗(h, η)] ∈ H3

ab(M,N ′).
We write

HomBr
(ϕ,f)[B,B

′]

for the set of homotopy classes of braided Gr-functors B → B′ inducing the same
pair (ϕ, f), and BCG for the category whose objects are braided categorical
groups and whose morphisms are braided monoidal functors. Now, we state
the classification theorem whose proof follows from Corollary 9, the proofs of
Theorem 7 and of Theorem 8 with some suitable modifications. This theorem
is aversion of Proposition 14 [6] with some modifications like Theorem 7.

Theorem 10 (Classification Theorem). There is a classifying functor

d : BCG → H3
BGr,

B �→ (π0B, π1B, [(h, η)B])
(F, F̃ ) �→ (F0, F1)

which has the following properties
i) dF is an isomorphism if and only if F is an equivalence,
ii) d is surjective on objects,
iii) d is full, but not faithful. For (ϕ, f) : dB → dB′, there is a bijection

HomBr
(ϕ,f)[B,B′] ∼= H2

ab(π0B, π1B
′).

We write
BCG[M,N ]

for the set of equivalence classes of braided Gr-categories whose pre-sticks are
of type (M,N). By Corollary 9, we can prove the following proposition

Theorem 11. There exists a bijection

Γ : BCG[M,N ] → H3
ab(M,N),

[B] �→ q−1
∗ p∗[(h, η)B].

We complete this section by a discussion of the classification result of
A. Joyal and R. Street. In [7], they classified braided Gr-categories by the
quadratic functions as follows.

A function ν : M → N between abelian groups is a quadratic map when
the function M × M → N, (x, y) �→ ν(x) + ν(y) − ν(x + y) is bilinear and
ν(−x) = ν(x).

The trace of an abelian 3-cocycle (h, η) ∈ Z3
ab(M,N) is a function

tη : M → N, tη(x) = η(x, x).



178 Monoidal functors between (braided) Gr-categories and...

A simple calculation shows that traces are quadratic maps, and Eilenberg -
MacLane [4, 9] proved that the traces determine an isomorphism

H3
ab(M,N) ∼= Quad(M,N), [(h, η)] �→ tη, (14)

where Quad(M,N) is the abelian group of quadratic maps from M to N . This
plays a fundamental role in the proof of Classification Theorem (Theorem 3.3
[7]).

A. Joyal and R. Street proved that each braided Gr-category B determines
a quadratic function qB : π0B → π1B and let Quad be a category whose objects
(M,N, t) are quadratic maps, t : M → N , between abelian groups M,N and
whose morphisms (ϕ, f) : (M,N, t) → (M ′, N ′, t′) consist of homomorphisms
ϕ, f such that we have a commutative square

M M ′

N N ′.

�ϕ

�
t

�
t′

�f

Theorem 12 (Theorem 3.3 [7]). The functor

T : BCG → Quad
B �→ (π0B, π1B, qB)

has the following properties
i) For each object Q of Quad, there exists an object B of BCG with an

isomorphism T (B) ∼= Q;
ii) For any isomorphism ρ : T (B) ∼→ T (B′), there is an equivalence F : B →

B′ such that T (F ) = ρ; and
iii) T (F ) is an isomorphism if and only if F is an equivalence.

We see that the isomorphism (14) induces an isomorphism between braided
Gr-categories

V : H3
BGr → Quad

(M,N, [h, η]) �→ (M,N, tη)

(ϕ, f) �→ (ϕ, f).

Hence, T is the composition

BCG d→ H3
BGr

V→ Quad
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4 Applications

4.1 Gr-category of an abstract kernel

The notion of abstract kernel was introduced in [10]. It is a triple (Π, G, ψ),
where ψ : Π → AutG/InG is a group homomorphism. In this section, we
describe the Gr-category structure of an abstract kernel and use it to make
constraints of a Gr-category be strict. The operation of G is denoted by +. The
center of G, denoted by ZG, consists of elements c ∈ G such that c+ a = a+ c
for all a ∈ G.

Let us recall that the obstruction of (Π, G, ψ) is an element [k] ∈ H3(Π, ZG)
defined as follows. For each x ∈ Π, choose ϕ(x) ∈ ψ(x) such that ϕ(1) = idG.
Then, there is a function f : Π2 → G satisfying

ϕ(x)ϕ(y) = μf(x,y)ϕ(xy), (15)

where μc is an inner-automorphism of the group G induced by c ∈ G. The pair
(ϕ, f) therefore induces an element k ∈ Z3(Π, ZG) defined by the relation

ϕ(x)[f(y, z)] + f(x, yz) = k(x, y, z) + f(x, y) + f(xy, z). (16)

For each group G, we can construct a category, AutG, whose objects are ele-
ments of the group of automorphisms AutG. For two elements α, β of AutG,
we write

Hom(α, β) = {c ∈ G|α = μc ◦ β}.

For two morphisms c : α → β; d : β → γ in AutG, their composition is
defined by d ◦ c = c+ d (the sum in G).

The category AutG is a strict Gr-category with the tensor product defined
by α⊗ β = α ◦ β, and

(α c→ α′) ⊗ (β d→ β′) = α⊗ β
c+α′d→ α′ ⊗ β′. (17)

The following proposition describes the reduced Gr-category of the Gr-
category of an abstract kernel.

Proposition 13. Let (Π, G, ψ) be an abstract kernel and [k] ∈ H3(Π, ZG) be
its obstruction, S = (Π′, C, h) be the reduced Gr-category of AutG. Then

i) Π′ = π0(AutG) = AutG/InG, C = π1(AutG) = ZG,

ii) ψ∗h belongs to the cohomology class of k.

Proof. i) It follows from the definition of the category AutG and the reduced
Gr-category.
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ii) Let (H, H̃) be a canonical Gr-equivalence from S to AutG. Then, the
following diagram

Hr(HsHt) id⊗H̃−−−−→ HrH(st) H̃−−−−→ H(r(st))∥∥∥ ⏐⏐�H(•,h(r,s,t))

(HrHs)Ht H̃⊗id−−−−→ H(rs)Ht H̃−−−−→ H((rs)t)

(18)

commutes for all r, s, t ∈ Π′. Since AutG is a strict Gr-category, we have

γα(u) = u, ∀α ∈ AutG, ∀u ∈ ZG = C.

By the definition of H, we obtainH(•, c) = c, ∀c ∈ C. From the commutativity
of the diagram (18) and the relation (17), we have

Hr[g(s, t)] + g(r, st) = g(r, s) + g(rs, t) − h(r, s, t), (19)

where g = gH : Π′ × Π′ → G is associated to H̃ .
For the abstract kernel (Π, G, ψ), choose a function ϕ = H.ψ : Π → Aut(G).

Clearly, ϕ(1) = idG. Moreover, since

H̃ψ(x),ψ(y) : Hψ(x)Hψ(y) → Hψ(xy)

is a morphism in AutG, for all x, y ∈ Π, we have

ϕ(x)ϕ(y) = Hψ(x)Hψ(y) = μf(x,y)Hψ(xy) = μf(x,y)ϕ(xy),

where f(x, y) = H̃ψ(x),ψ(y). The pair (ϕ, f) satisfies the relation (15) and thus,
it is a factor set of the abstract kernel (Π, G, ψ). It induces an obstruction
k(x, y, z) ∈ Z3(Π, ZG) satisfying (16). Now, for r = ψ(x), s = ψ(y), t = ψ(z),
the equation (19) becomes

ϕ(x)[f(y, z)] + f(x, yz) = +f(x, y) + f(xy, z) − (ψ∗h)(x, y, z).

In comparison with (16), [ψ∗h] = [k]. �

We now use Proposition 13 and the theorem on the realization of the ob-
struction in the group extension problem to prove Proposition 15. First, we
need the following lemma.

Lemma 14. Let H be a strict Gr-category and SH = (Π, C, h) be its reduced
Gr-category. Then, for each group homomorphism ψ : Π′ → Π, there exists a
strict Gr-category G which is Gr-equivalent to the Gr-category J = (Π′, C, h′),
where C is regarded as a Π′-module with an operator xc = ψ(x)c, and h′ belongs
to the same cohomology class as ψ∗h.
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Proof. We construct a strict Gr-category G as follows

Ob(G) = {(x,X)| x ∈ Π′, X ∈ ψ(x)},
Hom((x,X), (x, Y )) = {x} × HomH(X, Y ).

The tensor products on objects and on morphisms of G are defined by

(x,X) ⊗ (y, Y ) = (xy,X ⊗ Y ),
(x, u)⊗ (y, v) = (xy, u⊗ v).

The unit object of G is (1, I), where I is the unit object of H. One can verify
that G is a strict Gr-category. Moreover, we have isomorphisms

λ : π0G → Π′

[(x,X)] �→ x

f : π1G → π1H = C

(1, c) �→ c

and a Gr-functor (F, F̃ ) : G → H given by

F (x,X) = X, F (x, u) = u, F̃ = id.

Let SF = (φ, φ̃) : SG → SH be a Gr-functor induced by the functor (F, F̃ )
between the reduced Gr-categories. Then, we have

φ(x,X) = F0(x,X) = [F (x,X)] = [X] = ψ(x),
φ(1, u) = F1(1, u) = γF (1,I)F (1, u) = γI(u) = u,

where u is a morphism in G. This means F0 = ψλ and F1 = f , or SF is a
functor of type (ψλ, f).

Now let hG be the associativity constraint of SG. By Theorem 6, the ob-
struction of the pair (ψλ, f) must vanish in H3(π0G, π1H) = H3(π0G, C), i.e.,

(ψλ)∗h = f∗hG + δφ̃.

Now, if we denote h′ = f∗hG, then the pair (J, J̃), where J = (λ, f) and J̃ = id,
is a Gr-functor from SG to J = (Π′, C, h′). Thus, the composition

G
(G,G̃)−→ SG

(J,J̃)−→ J

is a Gr-equivalence from G to J = (Π′, C, h′).
Finally, we prove that h′ belongs to the same cohomology class as ψ∗h.

Let K = (λ−1, f−1) : (Π′, C, h′) → SG, then K together with K̃ = id is a
Gr-functor, and the composition

(φ, φ̃) ◦ (K, K̃) : (Π′, C, h′) → SH
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is a Gr-functor making the following diagram commute

SG SH

J = (Π′, C, h′).

�φ

	
	

		

K �

�
���
φ◦K

Clearly, φ ◦ K is a Gr-functor of type (ψ, id) and therefore its obstruction
vanishes. By (8), we have ψ∗h− h′ = ∂g, i.e., [h′] = [ψ∗h]. �

Proposition 15. Each Gr-category is Gr-equivalent to a strict one.

Proof. Let C be a Gr-category whose reduced Gr-category is SC = (Π′, C, k).
By the theorem on realization of the obstruction (Theorem 9.2 Section IV
[10]), the realization of 3-cocycle k ∈ H3(Π′, C) is the group G with the center
ZG = C and a group homomorphism ψ : Π′ → AutG/InG such that ψ induces
a Π′-module structure onC and the obstruction of the abstract kernel (Π′, G, ψ)
is k. By Proposition 13, SAutG =(AutG/InG,C, h) is the reduced Gr-category
of the strict Gr-category AutG, where [ψ∗h] = [k].

Applying Lemma 14 to H = AutG we see that the homomorphism ψ : Π′ →
AutG/InG defines a strict Gr-category G which is Gr-equivalent to the strict
Gr-category J = (Π′, C, h′). The Π′-module structures of C on SC and on
J coincide. Moreover, [ψ∗h] = [h′]. It follows that [h′] = [k]. So there is a
function g : Π′ × Π′ → C such that h′ − k = ∂g. Then, by Theorem 6,

(K, K̃) = (idΠ′ , idC, g) : SC → J

is a Gr-equivalence. Therefore, C is equivalent to the strict Gr-category G. �

Readers can see an another proof of Proposition 15 in [16].

4.2 Gr-functors and the group extension problem

In this section, we obtain Schreier Theory for group extensions thanks to The-
orem 7. We denote by

Ext(Π, G)

the set of equivalence classes of group extensions of G by Π, and state the
following theorem.

Theorem 16. Let G and Π be groups.
i) There is a canonical partition

Ext(Π, G) =
∐
ψ

Ext(Π, G, ψ),

where, for each group homomorphism ψ : Π → AutG/InG, Ext(Π, G, ψ) is the
set of equivalence classes of group extensions E : G → B → Π of G by Π
inducing ψ.



N. T. Quang, N. T. Thuy, P. T. Cuc 183

ii) Each abstract kernel (Π, G, ψ) determines a (normalized) third-dimensional
cohomology class Obs(Π, G, ψ) ∈ H3(Π, ZG) (with respect to the Π-module
structure on ZG obtained via ψ), called the obstruction of (Π, G, ψ). The ab-
stract kernel has extensions if and only if its obstruction vanishes. Then, there
is a bijection

Ext(Π, G, ψ) ↔ H2(Π, ZG).

Below, each factor set (ϕ, f) of a group extension can be lifted to a Gr-
functor F : DisΠ → AutG, where DisΠ is regarded as a Gr-category of the
type (Π, 0, 0), and therefore we can classify all group extensions by Gr-functors.

Denote by
Hom(ψ,0)[DisΠ,AutG]

the set of homotopy class of Gr-functors from DisΠ to AutG inducing the pair
of homomorphisms (ψ, 0), we have.

Theorem 17. There exists a bijection

Δ : Hom(ψ,0)[DisΠ,AutG] → Ext(Π, G, ψ).

Proof. Step 1: The construction of the group extension EF of G by Π induced
by Gr-functor F.

Let (F, F̃ ) : DisΠ → AutG be a Gr-functor. Then, F̃x,y = f(x, y) is a
function from Π2 to G such that

Fx ◦ Fy = μf(x,y) ◦ F (xy). (20)

The compatibilities of (F, F̃ ) with the associativity and unit constraints, re-
spectively, imply

Fx[f(y, z)] + f(x, yz) = f(x, y) + f(xy, z), (21)

f(x, 1) = f(1, y) = 0. (22)

Set BF = {(a, x)|a ∈ G, x ∈ Π} and the operation

(a, x) + (b, y) = (a + Fx(b) + f(x, y), xy).

Then, BF is an extension of G by Π,

EF : 0 → G
i→ BF

p→ Π → 1,

where i(a) = (a, 1), p(a, x) = x. The relations (20), (21) imply the associativity
of the operation in BF . By the relation (22), (0, 1) is the zero, while (b, x−1) ∈
BF is negative of the element (a, x), where b is an element such that Fx(b) =
−a − f(x, x−1).
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The associated homomorphism ψ : Π → AutG/InG is determined by ψ(x) =
[μ(0,x)]. By a simple calculation, we have μ(0,x)(a, 1) = (Fx(a), 1). Let G and
its image iG be identical, we obtain ψ(x) = [Fx].
Step 2: F and F ′ are homotopic if and only if EF and EF ′ are equivalent.

Let F, F ′ : DisΠ → AutG be Gr-functors and α : F → F ′ be a homotopy.
Then, by the definition of Gr-morphism, the following diagram commutes

Fx⊗ Fy F (xy)

F ′x⊗ F ′y F ′(xy).

�F̃

�
αx⊗αy

�
αxy

�F̃
′

That is,
F̃x,y + αxy = αx ⊗ αy + F̃ ′

x,y,

or
f(x, y) + αxy = αx + F ′x(αy) + f ′(x, y). (23)

Now, we write

β : BF → BF ′

(a, x) �→ (a+ αx, x).

Note that Fx = μαx ◦F ′x, and by (23) one can see that β is a homomorphism.
Moreover, it is an isomorphism making the following diagram commute, i.e.,
EF and EF ′ are equivalent,

EF : 0 G BF Π 1

EF ′ : 0 G BF ′ Π 1.

� �i

�id

�p

�β

�

�id
� �i

′
�p
′

�

The converse can be obtained as we see by retracing our steps.
Step 3: Δ is a surjection.

Suppose that the group extension

E : 0 → G
i→ B

p→ Π → 1

associates to the homomorphism ψ : Π → AutG/InG. Select a “representative”
ux, x ∈ Π, in B, that is p(ux) = x. In particular, choose u1 = 0. Then, the
elements of B can be written uniquely as a+ ux, for a ∈ G, x ∈ Π, and

ux + a = μux(a) + ux.



N. T. Quang, N. T. Thuy, P. T. Cuc 185

The sum ux + uy must be in the same coset as uxy, so there are unique
elements f(x, y) ∈ G such that

ux + uy = f(x, y) + uxy.

The function f is a factor set of the extension E. It satisfies the relations

μux [f(y, z)] + f(x, yz) = f(x, y) + f(xy, z), x, y, z ∈ Π, (24)

f(x, 1) = f(1, y) = 0. (25)

We define a Gr-functor F = (F, F̃): DisΠ → AutG as follows: Fx = μux ,
F̃x,y = f(x, y).

Clearly, the relations (24), (25) show that (F, F̃ ) is a monoidal functor
between Gr-categories. �

We now prove Theorem 16.
Let (Π, G, ψ) be an abstract kernel. For each x ∈ Π, choose ϕ(x) ∈ ψ(x)

such that ϕ(1) = idG. The family of ϕ(x)’s induces a function f : Π2 →
G satisfying the relation (15). The pair (ϕ, f) induces an obstruction k ∈
Z3(Π, ZG) by the relation (16). Write F (x) = ϕ(x), we obtain a functor
DisΠ → AutG.

Let S = (AutG/InG,ZG, h) be the reduced Gr-category of AutG. Then F
induces the pair of group homomorphisms (ψ, 0) : (Π, 0) → (AutG/InG,ZG)
and by the relation (8) an obstruction of the functor F is ψ∗h. By Proposition
13, [ψ∗h] = [k], i.e., the obstruction of the abstract kernel (Π, G, ψ) and that
of the functor F coincide. Then, by Theorem 6, (Π, G, ψ) has extensions if and
only if its obstruction vanishes.

According to Theorem 7, there is a bijection

Hom(ψ,0)[DisΠ,AutG] ↔ H2(Π, ZG),

since π0(DisΠ) = Π, π1(AutG) = ZG. Together with Theorem 17, one obtains

Ext(Π, G, ψ) ↔ H2(Π, ZG).

This completes the proof of Theorem 16 .
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[5] A. Fröhlich and C. T. C. Wall, Graded monoidal categories, Compositio Mathematica,
tom. 28, No. 3 (1974), 229–285.

[6] A. Joyal and R. Street, Braided monoidal categories, Macquarie Mathematics Report
No. 860081, November 1986.

[7] A. Joyal and R. Street, Braided tensor categories, Adv. Math. Vol. 2, No. 1 (1993) 20–78.

[8] M. L. Laplaza, Coherence for categories with group structure: an alternative approach,
J. Algebra, 84 (1983), 305–323.

[9] S. MacLane, Cohomology theory of abelian groups, Proc. InternationalCongress of Math-
ematicians, Vol. II (1950), 8–14.

[10] S. Mac Lane, Homology, Springer, 1975.

[11] N. T. Quang, Ann-categories and the Mac Lane-Shukla cohomology of rings. Abelian
groups and modules,Tomsk. Gos. Univ., Tomsk, No. 11, 12 (1994)(Russian), 166–183.

[12] N. T. Quang, The factor sets of Gr-categories of the type (Π, A), International Journal
of Algebra, Vol. 4, 2010, No. 14, 655–668.

[13] N. T. Quang and D. D. Hanh, Cohomological classification of Ann-functors, East-West
J. of Mathematics, Vol. 11, No. 2 (2009), 195–210.

[14] N. SaavedraRivano, Catégories Tannakiennes, Lecture Notes in Math. Vol. 265, Spriger-
Verlag, Berlin and New York (1972).

[15] H. X. Sinh, Gr-catégories, Université Paris VII, Thèse de doctorat (1975).
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