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Abstract

In this paper, semilattice congruence and fuzzy semilattice congru-
ence on po-Γ-semigroup are studied via operator semigroups. Among
other results we obtain a lattice isomorphism between fuzzy semilattice
congruences of a Γ-semigroup and that of its left operator semigroup.
Using this result we have shown that any sublattice of the lattice of all
fuzzy semilattice congruences of a po-Γ-semigroup is modular.

1 Introduction

A semigroup is an algebraic structure consisting of a non-empty set S together
with an associative binary operation. The formal study of semigroups began
in the early 20th century. Semigroups are important in many areas of mathe-
matics, e.g., coding and language theory, automata theory, combinatorics and
mathematical analysis. In 1981, Sen and Saha [19] defined the notion of a
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Γ-semigroup as a generalization of a semigroup. Many classical notions of
semigroups have been extended to Γ-semigroups.

After the introduction of fuzzy sets by Zadeh[24], reconsideration of some
concepts of classical mathematics began. Many properties of semigroups have
been studied in terms of fuzzy subsets. Among other references we refer the
readers to Kuroki’s monograph[10]. Since Γ-semigroup generalizes semigroup,
it is natural to investigate Γ-semigroups in terms of fuzzy subsets. In this
direction we may refer to [14, 15, 16, 17]. Fuzzy relations were defined by
Zadeh[25]. Since then, fuzzy equivalence relations and fuzzy congruence rela-
tions were studied. Like congruence, fuzzy congruence plays an important role
in the theory of semigroups. Readers may refer to [1, 2, 7, 8, 9, 11, 12, 13].
In this paper, as continuation of our study of po-Γ-semigroups[18], we intro-
duce the notion of semilattice congruence and fuzzy semilattice congruence and
study them using operator semigroups. For basic notions of po-Γ-semigroups
and fuzzy concepts in po-Γ-semigroups we refer respectively to [21],[18]. For
basic notions of semilattice congruence in semigroups and Γ-semigroups we
refer respectively to [6],[23].

2 Preliminaries

Definition 2.1. [20] Let S = {x, y, z, ....} and Γ = {α, β, γ....} be two non-
empty sets. Then S is called a Γ-semigroup if there exists a mapping S×Γ×S →
S(images to be denoted by aαb) satisfying (1) xγy ∈ S, (2) (xβy)γz = xβ(yγz)
for all x, y, z ∈ S, α, β, γ ∈ Γ.

Remark 1. Definition 2.1 is the definition of one sided Γ-semigroup. It may
be noted here that in 1981 Sen[19] introduced the notion of both sided Γ-
semigroups.

Note 1. Any semigroup can be considered to be a Γ-semigroup.

Example 1. Let S be the set of all 2 × 3 matrices over the set of positive
integers and Γ be the set of all 3 × 2 matrices over same set. Then S is a
both-sided Γ-semigroup with respect to the usual matrix multiplication.

The following example shows that there exists a one sided Γ-semigroup
which is not a both sided Γ-semigroup.

Example 2. Let S be a set of all negative rational numbers. Obviously S is
not a semigroup under usual product of rational numbers. Let Γ = {−1

p
: p is

prime }. Let a, b, c ∈ S and α, β ∈ Γ. Now if aαb is equal to the usual product
of rational numbers a, α, b then aαb ∈ S and (aαb)βc = aα(bβc). Hence S is a
one sided Γ-semigroup. It is also clear that it is not a both sided Γ-semigroup.
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Definition 2.2 (21). A Γ-semigroup S is said to be po-Γ-semigroup(partially
ordered Γ-semigroup) if (1) S and Γ are posets, (2) a ≤ b in S implies that
aαc ≤ bαc, cαa ≤ cαb in S for all c ∈ S and for all α ∈ Γ, (3) α ≤ β in Γ
implies that aαb ≤ aβb for all a, b ∈ S.

Remark 2. The partial order relations on S and Γ are denoted by the same
symbol ≤ .

Remark 3. Definition 2.2 is the definition of one sided po-Γ-semigroup. It
may be noted here that T.K. Dutta and N.C. Adhikari[5] introduced the no-
tion of both sided po-Γ-semigroup and also introduced the notions of operator
semigroups of a both sided po-Γ-semigroup.

Throughout this paper unless otherwise mentioned S stands for one sided
Γ-semigroup.

Example 3. [5] The Γ-semigroup in Example 1 is a po-Γ-semigroup with re-
spect to ≤ defined by (aik) ≤ (bik) if and only if aik ≤ bik for all i, k. Then S
is a po-Γ-semigroup.

Definition 2.3. [24] A fuzzy subset μ of a non-empty set X is a function
μ : X → [0, 1].

Definition 2.4 (24). Let μ be a fuzzy subset of a non-empty set X. Then the
set μt = {x ∈ X : μ(x) ≥ t} for t ∈ [0, 1], is called a level subset or the t-level
subset of μ.

Definition 2.5. [3]Let S be a Γ-semigroup. Then the relation ρ on S × Γ,
defined by (x, α)ρ(y, β) if and only if xαs = yβs for all s ∈ S, is an equivalence
relation. Let [x, α] denote the equivalence class containing (x, α). Let L =
{[x, α] : x ∈ S, α ∈ Γ}. Then L is a semigroup with respect to the multiplication
defined by [x, α][y, β] = [xαy, β]. This semigroup L is called the left operator
semigroup of the Γ-semigroup S. Dually the right operator semigroup R of S
is defined where the multiplication is defined by [α, a][β, b] = [α, aβb].

If there exists an element [e, δ] ∈ L([γ, f ] ∈ R) such that eδs = s(resp.
sγf = s) for all s ∈ S then [e, δ](resp. [γ, f ]) is called the left(resp. right)
unity of S.

Note 2. The left(right) unity of S is the identity of L(respectively R).

From Definition 2.2 we easily obtain the following:

Proposition 2.6. Let S be a Γ-semigroup with S, Γ are posets. Then S is
a po-Γ-semigroup if and only if a ≤ b, α ≤ β, c ≤ d ⇒ aαc ≤ bβd, for all
a, b, c, d ∈ S and α, β ∈ Γ.

Now we easily obtain the following theorems.
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Theorem 2.7. Let S be a po-Γ-semigroup. Then the left operator semigroup L
and the right operator semigroup R of S are po-semigroups where [a, α] ≤ [b, β]
in L if and only if ∀s ∈ S, aαs ≤ bβs in S and [α, a] ≤ [β, b] in R if and only
if ∀s ∈ S, sαa ≤ sβb in S.

Theorem 2.8. Let S be a Γ-semigroup with unities and L and R be po-
semigroups. Then S is a po-Γ-semigroup where a ≤ b in S if and only if
∀α ∈ Γ [a, α] ≤ [b, α] in L and [α, a] ≤ [α, b] in R.

Definition 2.9. [14] For a fuzzy subset μ of R we define a fuzzy subset μ∗ of
S by μ∗(a) = inf

γ∈Γ
μ([γ, a]), where a ∈ S. For a fuzzy subset η of S we define

a fuzzy subset η∗′
of R by η∗′

([α, a]) = inf
s∈S

η(sαa), where [α, a] ∈ R. For a

fuzzy subset δ of L, we define a fuzzy subset δ+ of S by δ+(a) = inf
γ∈Γ

δ([a, γ]),

where a ∈ S. For a fuzzy subset ν of S we define a fuzzy subset ν+
′

of L by
ν+

′
([a, α]) = inf

s∈S
ν(aαs), where [a, α] ∈ L.

For the corresponding notions in crisp set we refer to [3] and [4].

3 Semilattice congruence on po-Γ-semigroup

Definition 3.1. Let R be a relation on a po-Γ-semigroup S. Then
(i) R is called compatible if xRy implies (aγx)R(aγy) and (xγa)R(yγa) for all
x, y, a ∈ S and for all γ ∈ Γ, where xRy means (x, y) ∈ R.
(ii) R is called a congruence relation on S, if it is a compatible equivalence
relation on S.

Generally the set of all compatible relations on S is denoted by Com(S)
and the set of all congruence relations on S is denoted by Con(S).

Definition 3.2. Let ρ be a relation on S. Then ρ+
′
, defined by [x, α]ρ+

′
[y, β]

if and only if (xαs)ρ(yβs) ∀s ∈ S, is a relation on L.
Similarly, for a relation σ on L, σ+ defined by xσ+y if and only if [x, α]σ[y, α]

∀α ∈ Γ is a relation on S.

Definition 3.3. [6]Let S be a po-semigroup. An equivalence relation σ on S
is a ordered semilattice congruence if

(1) σ is a congruence:

(a, b) ∈ σ ⇒ (ac, bc) ∈ σ, (ca, cb) ∈ σ∀a, b, c ∈ S,

(2) (a2, a) ∈ σ and (ab, ba) ∈ σ ∀a, b ∈ S,

(3) For any a, b ∈ S with a ≤ b ⇒ (a, ab) ∈ σ.
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Definition 3.4. [23]Let S be a po-Γ-semigroup. An equivalence relation σ on
S is a ordered semilattice congruence if

(1) σ is a congruence:

(a, b) ∈ σ ⇒ (aγc, bγc) ∈ σ, (cγa, cγb) ∈ σ∀a, b, c ∈ S, ∀γ ∈ Γ,

(2) (aγa, a) ∈ σ and (aγb, bγa) ∈ σ ∀a, b ∈ S, ∀γ ∈ Γ,

(3) For any γ ∈ Γ and a, b ∈ S with a ≤ b ⇒ (a, aγb) ∈ σ.

The set of all ordered semilattice congruences on S is generally denoted by
OSC(S).

In what follows the po-Γ-semigroup S is assumed to be with left and right
unities.

Proposition 3.5. Let S be a po-Γ-semigroup and σ ∈ OSC(S). Then σ+
′ ∈

OSC(L).

Proof. Clearly μ+
′
is an equivalence relation on L. Now let ([x, α], [y, β]) ∈ σ+

′
.

Then (xαs, yβs) ∈ σ ∀s ∈ S(cf. Def 3.2). Since σ is congruence in S,
(xαsγz, yβsγz) ∈ σ ∀s, z ∈ S, ∀γ ∈ Γ. So ([xαs, γ], [yβs, γ]) ∈ σ+

′
whence

([x, α][s, γ], [y, β][s, γ]) ∈ σ+
′ ∀s ∈ S, ∀γ ∈ Γ. Similarly ([s, γ][x, α], [s, γ][y, β]) ∈

σ+
′ ∀s ∈ S, ∀γ ∈ Γ. Hence σ+

′
is a congruence in L. By Definition 3.4,

(xαx, x) ∈ σ ∀x ∈ S, ∀α ∈ Γ whence (xαxαs, xαs) ∈ σ ∀x, s ∈ S, ∀α ∈ Γ i.e.,
([x, α][x, α], [x, α]) ∈ σ+

′ ∀x ∈ S, α ∈ Γ. Now let [x, α], [y, β] ∈ L. By Definition
3.4, (sαx, xαs) ∈ σ ⇒ (yβsαx, yβxαs) ∈ σ ∀s ∈ S. Again (xαyβs, yβsαx) ∈ σ
∀s ∈ S. So by transitivity of σ we get (xαyβs, yβxαs) ∈ σ ∀s ∈ S. Hence
([x, α][y, β], [y, β][x, α]) ∈ σ+

′
. Lastly let [x, α] ≤ [y, β] in L. Then xαs ≤ yβs

in S ∀s ∈ S whence (xαs, xαsγyβs) ∈ σ ∀s ∈ S, ∀γ ∈ Γ(cf. Def 3.4). So in
paticular, (xαe, xαeδyβe) ∈ σ ⇒ (xαe, xαyβe) ∈ σ ⇒ (xαeγs, xαyβeγs) ∈ σ
∀s ∈ S, ∀γ ∈ Γ(cf. Def 3.4) where [e, δ] is the left unity of S. Now taking
γ = δ we get (xαs, xαyβs) ∈ σ ∀s ∈ S. So ([x, α], [x, α][y, β]) ∈ σ+

′
. Hence

σ+
′ ∈ OSC(L). �

Proposition 3.6. Let S be a po-Γ-semigroup and σ ∈ OSC(L). Then σ+ ∈
OSC(S).

Proof. It is easy to see that σ+ is an equivalence relation on S. Let (x, y) ∈
σ+. Then ([x, α], [y, α]) ∈ σ ∀α ∈ Γ(cf. Def 3.2). Since σ is a congru-
ence in L, ([x, α][s, γ],[y, α] [s, γ]) ∈ σ ∀s ∈ S, ∀α, γ ∈ Γ(cf. Def 3.3). So
([xαs, γ], [yαs, γ]) ∈ σ ∀γ ∈ Γ whence (xαs, yαs) ∈ σ+ ∀s ∈ S, ∀α ∈ Γ.
Similarly (sαx, sαy) ∈ σ+ ∀s ∈ S, ∀α ∈ Γ. Hence σ+ is a congruence in
S. By Definition 3.3, ([x, α][x, α], [x, α]) ∈ σ i.e., ([xαx, α], [x,α]) ∈ σ ∀x ∈
S, ∀α ∈ Γ whence (xαx, x) ∈ σ+ ∀x ∈ S, ∀α ∈ Γ; ([x, α][y, α], [y, α][x,α]) ∈ σ
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i.e., ([xαy, α], [yαx, α]) ∈ σ ∀x, y ∈ S, ∀α ∈ Γ whence (xαy, yαx) ∈ σ+

∀x, y ∈ S, ∀α ∈ Γ. Now let x ≤ y in S. Then [x, α] ≤ [y, α] in L ∀α ∈ Γ
whence ([x, α], [x, α][y, α]) ∈ σ(cf. Def.3.3) i.e., ([x, α], [xαy, α]) ∈ σ ∀α ∈ Γ.
So (x, xαy) ∈ σ+. Hence we conclude that σ+ ∈ OSC(S). �

Theorem 3.7. Let S be a po-Γ-semigroup with the left operator semigroup L.

Then there exists an inclusion preserving bijection σ → σ+
′

between OSC(S)
and OSC(L).

Proof. Let σ ∈ OSC(S). Then by Proposition 3.5, σ+
′ ∈ OSC(L). Let

(x, y) ∈ σ. Then σ being a congruence in S (xαs, yαs) ∈ σ ∀s ∈ S, ∀α ∈ Γ
whence ([x, α], [y, α]) ∈ σ+

′ ∀α ∈ Γ. So (x, y) ∈ (σ+
′
)
+
. Thus σ ⊆ (σ+

′
)
+
.

On the other hand, for x, y ∈ S let (x, y) ∈ (σ+
′
)
+
. Then ([x, α], [y, α]) ∈ σ+

′

∀α ∈ Γ ⇒ (xαs, yαs) ∈ σ ∀s ∈ S, ∀α ∈ Γ(cf. Def 3.2) ⇒ (xγf, yγf) ∈ σ

i.e., (x, y) ∈ σ where [γ, f ] is the right unity of S. Thus (σ+
′
)
+ ⊆ σ. Hence

(σ+
′
)
+

= σ.
Again let σ ∈ OSC(L) and ([x, α], [y, β]) ∈ σ. Then σ being a congruence in
L, ([x, α][s, γ], [y, β][s, γ]) ∈ σ i.e., ([xαs, γ], [yβs, γ]) ∈ σ ∀s ∈ S, ∀γ ∈ Γ. So
(xαs, yβs) ∈ σ+ ∀s ∈ S whence ([x, α], [y, β]) ∈ (σ+)+

′
. Thus σ ⊆ (σ+)+

′
.

On the other hand, for [x, α], [y, β] ∈ L let ([x, α], [y, β]) ∈ (σ+)+
′
. Then

(xαs, yβs) ∈ σ+ ∀s ∈ S whence ([xαs, γ], [yβs, γ]) ∈ σ i.e.,
([x, α][s, γ], [y, β][s, γ]) ∈ σ ∀s ∈ S, γ ∈ Γ. Since [x, α][e, δ] = [x, α] ∀[x, α] ∈ L

where [e, δ] is the left unity of S, ([x, α], [y, β]) ∈ σ. Thus (σ+)+
′ ⊆ σ. Hence

(σ
+
)+

′
= σ. Hence the mapping is bijective. Let σ1, σ2 ∈ OSC(S) be such

that σ1 ⊆ σ2. Let ([x, α], [y, β]) ∈ σ+
′

1 . Then (xαs, yβs) ∈ σ1∀s ∈ S. So

(xαs, yβs) ∈ σ2∀s ∈ S whence ([x, α], [y, β]) ∈ σ+
′

2 . Hence σ+
′

1 ⊆ σ+
′

2 . There-

fore σ+
′

1 ⊆ σ+
′

2 . Hence the result follows. �

4 Fuzzy semilattice congruence on po-Γ-semigroup

Definition 4.1. Let S be a po-Γ-semigroup. A function C from S×S to [0, 1]
is called a fuzzy relation on S.

Let C and D be two fuzzy relations on S. Then (i) C ⊆ D if and only if
C(x, y) ≤ D(x, y), (ii) C ∩D if and only if (C ∩D)(x, y) = (C(x, y)∧D(x, y)),
(iii) C ◦ D if and only if C ◦ D(x, y) =

∨

z∈S

(
C(x, z)∧ D(z, y)

) ∀x, y ∈ S.

Definition 4.2. Let S be a po-Γ-semigroup. A fuzzy relation C on S is said
to be a fuzzy equivalence relation on S if it satisfies the followings (i) Fuzzy
reflexive: C(x, x) = 1, (ii) Fuzzy symmetric: C(x, y) = C(y, x),



S. K. Sardar, P. Pal and R. Mukherjee 157

(iii) Fuzzy transitive: C(x, y) ≥ ∨

z∈S

(
C(x, z)∧ D(z, y)

)
i.e., C◦C ⊆ C ∀x, y, z ∈

S.

Definition 4.3. Let S be a po-Γ-semigroup and C be a fuzzy relation on S.
Then

(i) C is called a fuzzy compatible relation if C(aγx, aγy) ≥ C(x, y) and
C(xγa, yγa) ≥ C(x, y) ∀x, y, a ∈ S, γ ∈ Γ.

(ii) C is called a fuzzy congruence relation on S if it is a fuzzy compatible
equivalence relation on S.

Definition 4.4. Let S be a po-Γ-semigroup and μ be a fuzzy relation on
S. Then μ+

′
defined by μ+

′
([x, α], [y, β]) = inf

s∈S
μ(xαs, yβs) is a fuzzy rela-

tion on L. Similarly, for a fuzzy relation ν on L, ν+ defined by ν+(x, y) =
inf
γ∈Γ

ν([x, γ], [y, γ]) is a fuzzy relation on S.

Definition 4.5. Let S be a po-semigroup. A fuzzy equivalence relation μ on
S is called an ordered fuzzy semilattice congruence if

(1) μ is a fuzzy congruence relation (μ(a, b) ≤ μ(ac, bc), μ(a, b) ≤ μ(ca, cb)∀a, b, c ∈
S),

(2) μ(a2, a) = 1 and μ(ab, ba) = 1 ∀a, b ∈ S,

(3) For any a, b ∈ S with a ≤ b ⇒ μ(a, ab) = 1.

Definition 4.6. Let S be a po-Γ-semigroup. A fuzzy equivalence relation μ
on S is called an ordered fuzzy semilattice congruence if

(1) μ is a fuzzy congruence relation, i.e, μ(aγx, aγy) ≥ μ(x, y) and μ(xγa, yγa) ≥
μ(x, y) ∀x, y, a ∈ S and ∀γ ∈ Γ.

(2) μ(aγa, a) = 1 and μ(aγb, bγa) = 1 ∀a, b ∈ S, ∀γ ∈ Γ,

(3) For any γ ∈ Γ and a, b ∈ S with a ≤ b ⇒ μ(a, aγb) = 1.

The set of all ordered fuzzy semilattice congruences on S is generally de-
noted by OFSC(S).

It is a matter of routine verification that the definition of ordered fuzzy
semilattice congruence satisfies characteristic function criterion and level subset
criterion.

Theorem 4.7. Let R be a relation on a po-Γ-semigroup S and χR be the
characteristic function of R. Then R ∈ OSC(S) if and only if χR ∈ OFSC(S).

Theorem 4.8. Let S be a po-Γ-semigroup. Then μ ∈ OFSC(S) if and only if
Rμ(t) ∈ OSC(S) for all t ∈ [0, 1], where Rμ(t) = {(a, b) ∈ S × S : μ(a, b) ≥ t}
is the t-level subset of μ in S.
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In what follows a po-Γ-semigroup S is assumed to be with left and right
unities.

Proposition 4.9. Let S be a po-Γ-semigroup and μ ∈ OFSC(S). Then μ+
′ ∈

OFSC(L).

Proof. Clearly σ+
′
is a fuzzy equivalence relation on L. Now for x, y, z ∈ S and

α, β, γ ∈ Γ, μ+
′
([x, α][z, γ], [y, β][z, γ]) = inf

s∈S
μ(xαzγs, yβzγs) ≥ μ(xαz, yβz)

(cf. Def 4.6) ≥ inf
z∈S

μ(xαz, yβz) = μ+
′
([x, α], [y, β]). Similarly μ+

′
([s, γ][x, α],

[s, γ][y, β]) ≥ μ+
′
([x, α], [y, β]) ∀s ∈ S, ∀γ ∈ Γ. Hence μ+

′
is a fuzzy congruence

in L. Now let [x, α] ∈ L. Then μ(xαx, x) = 1 ∀x ∈ S, ∀α ∈ Γ. Since μ is fuzzy
congruence, μ(xαxαs, xαs) ≥ μ(xαx, x) = 1 ∀s ∈ S, whence μ(xαxαs, xαs) =
1 ∀s ∈ S. So inf

s∈S
μ(xαxαs, xαs) = 1 i.e., μ+

′
([x, α][x, α], [x,α]) = 1. Now let

[x, α], [y, β] ∈ L. By Definition 4.6, μ(sαx, xαs) = 1 ⇒ μ(yβsαx, yβxαs) = 1
∀s ∈ S. Again μ(xαyβs, yβsαx) = 1 ∀s ∈ S. So by transitivity of μ we get
μ(xαyβs, yβxαs) ≥ min{μ(xαyβs, yβsαx), μ(yβsαx, yβxαs)} = 1 ∀s ∈ S. So
inf
s∈S

μ(xαyβs, yβxαs) = 1. Hence μ+
′
([x, α][y, β], [y, β][x, α]) = 1. Lastly let

[x, α] ≤ [y, β] in L. So xαs ≤ yβs in S ∀s ∈ S whence μ(xαs, xαsγyβs) = 1
∀s ∈ S, ∀γ ∈ Γ(cf. Def 4.6). So μ(xαe, xαeδyβe) = 1 ⇒ μ(xαe, xαyβe) = 1 ⇒
μ(xαeγs, xαyβeγs) = 1 (∀s ∈ S, γ ∈ Γ) ⇒ μ(xαs, xαyβs) = 1 ∀s ∈ S where
[e, δ] is the left unity of S. So inf

s∈S
μ(xαs, xαyβs) = 1 i.e., μ+

′
([x, α], [x, α][y, β]) =

1. Hence μ+
′ ∈ OFSC(L). �

Proposition 4.10. Let S be a po-Γ-semigroup and μ ∈ OFSC(L). Then
μ+ ∈ OFSC(S).

Proof. Clearly μ+ is a fuzzy equivalence relation on S. Now for x, y, z ∈ S, and
α ∈ Γ, μ+(xαz, yαz) = inf

γ∈Γ
μ([xαz, γ], [yαz, γ]) = inf

γ∈Γ
μ([x, α][z, γ], [y, α][z, γ])

≥ μ([x, α], [y, α]) (cf. Def 4.5) ≥ inf
α∈Γ

μ([x, α], [y, α]) = μ+(x, y). Similarly

μ+(zαx, zαy) ≥ μ+(x, y)∀z ∈ S, α ∈ L. Hence μ+ is fuzzy congruence in
S. By Definition 4.5, μ([x, α][x, α], [x, α]) = 1 i.e., μ([xαx, α], [x,α]) = 1
∀x ∈ S, ∀α ∈ Γ. So inf

α∈Γ
μ([xαx, α], [x,α]) = 1 whence μ+(xαx, x) = 1 ∀x ∈

S, ∀α ∈ Γ(cf. Def 4.4). Again by Definition 4.5, μ([x, α][y, α], [y, α][x, α]) = 1
i.e., μ([xαy, α], [yαx, α]) = 1 ∀x, y ∈ S, ∀α ∈ Γ. So inf

α∈Γ
μ([xαy, α], [yαx, α]) = 1

whence μ+(xαy, yαx) = 1 ∀x, y ∈ S, ∀α ∈ Γ. Lastly let x ≤ y in S. So
[x, α] ≤ [y, α] in L ∀α ∈ Γ whence μ([x, α], [x, α][y, α]) = 1(cf. Def4.5) i.e.,
μ([x, α], [xαy, α]) = 1 ∀α ∈ Γ. So inf

α∈Γ
μ([x, α], [xαy, α]) = 1 whence μ+(x, xαy) =

1. Hence μ+ ∈ OFSC(S). �
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Theorem 4.11. Let S be a po-Γ-semigroup with the left operator semigroup L.

Then there exists an inclusion preserving bijection μ → μ+
′
between OFSC(S)

and OFSC(L).

Proof. Let μ ∈ OFSC(S). Then by Proposition 4.9, μ+
′ ∈ OFSC(L). Let

x, y ∈ S. Then μ being a fuzzy congruence in S μ(x, y) ≤ μ(xαs, yαs) ∀s ∈
S, ∀α ∈ Γ. Hence μ(x, y) ≤ μ+

′
([x, α], [y, α]) ∀α ∈ Γ whence μ(x, y) ≤

(μ+
′
)
+
(x, y)(cf. Def 4.4). Thus μ ⊆ (μ+

′
)
+
. On the other hand, let x, y ∈ S.

(μ+
′
)
+
(x, y) = inf

α∈Γ
μ+

′
([x, α], [y, α]) = inf

α∈Γ
inf
s∈S

μ(xαs, yαs) ≤ μ(x, y) (since S

has right unity). Thus (μ+
′
)
+ ⊆ μ. Hence (μ+

′
)
+

= μ.

Again let μ ∈ OFSC(L) and [x, α], [y, β] ∈ L. Then by Definition 4.5,
μ([x, α], [y, β]) ≤ μ([x, α][s, γ], [y, β][s, γ]) = μ([xαs, γ], [yβs, γ]) ∀s ∈ S, ∀γ ∈ Γ.
So μ([x, α], [y, β]) ≤ μ+(xαs, yβs) ∀s ∈ S whence μ([x, α], [y, β]) ≤
(μ+)+

′
([x, α], [y, β])(cf. Def 4.4). Thus μ ⊆ (μ+)+

′
. On the other hand, for

[x, α], [y, β] ∈ L, (μ+)+
′
([x, α], [y, β]) = inf

s∈S
μ+(xαs, yβs) =

inf
s∈S

inf
γ∈Γ

μ([xαs, γ], [yβs, γ]) = inf
s∈S

inf
γ∈Γ

μ([x, α][s, γ], [y, β][s, γ]) ≤ μ([x, α], [y, β])

(since S has left unity and so L has identity). Thus (μ+)+
′ ⊆ μ. Hence

(μ
+
)+

′
= μ. Hence the mapping is bijective. Let μ1, μ2 ∈ OFSC(S) be such

that μ1 ⊆ μ2. Let ([x, α], [y, β]) ∈ L. Then μ+
′

1 ([x, α], [y, β]) = inf
s∈S

μ1(xαs, yβs) ≤
inf
s∈S

μ2(xαs, yαs) = μ+
′

2 ([x, α], [y, β]). Therefore μ+
′

1 ⊆ μ+
′

2 . Hence the theorem.

�
Now following the terminology of [10] we define the following notion in

po-semigroup and po-Γ-semigroup.

Definition 4.12. Let μ be a fuzzy equivalence on a po-semigroup(po-Γ-semigroup)
S. For each a ∈ S, we define a fuzzy subset μa of S as follows:

μa(x) = μ(a, x)∀x ∈ S.

The fuzzy subset μa of S is called the fuzzy equivalence class of μ containing
a.

Note 3. It is easy to verify that μa = μb if and only if μ(a, b) = 1 ∀a, b ∈ S
and if μ ∈ OFSC(S) then μa is a fuzzy subsemigroup of S ∀a ∈ S.

Proposition 4.13. Let μ ∈ OFSC(S) where S be a po-Γ-semigroup S. Then
S/μ = {μa : a ∈ S} is a commutative po-Γ-semigroup with respect to the map
from S/μ×Γ× S/μ → S/μ by (μa, γ, μb) → μaγb and with respect to the usual
partial order(fuzzy set inclusion).
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Proof. Let μa = μa1 and μb = μb1 where a, b, a1, b1 ∈ S. Then μ(a, a1) =
1 = μ(b, b1). Then μ(aγb, a1γb1) ≥ μ(aγb, a1γb) ∧ μ(a1γb, a1γb1) ≥ μ(a, a1) ∧
μ(b, b1) (cf. Def 4.6) = 1. So μaγb = μa1γb1 . Hence the map is well-defined. Now
for a, b, c ∈ S and α, γ ∈ Γ, μaγ(μbαμc) = μaγμbαc = μaγ(bαc) = μ(aγb)αc =
μ(aγb)αμc = (μaγμb)αμc. Hence S/μ is a Γ-semigroup. Now let a, b ∈ S and
γ ∈ Γ. Since μ ∈ OFSC(S), μ(aγb, bγa) = 1. So μaγb = μbγa which means
μaγμb = μbγμa. Hence S/μ is a commutative Γ-semigroup. Again S/μ is poset
with usual fuzzy set inclusion. Let a, b, c ∈ S and γ ∈ Γ with μa ≤ μb. So
μ(a, x) ≤ μ(b, x) ∀x ∈ S. Then μ(bγc, x) ≥ μ(bγc, aγc) ∧ μ(aγc, x) ≥ μ(b, a) ∧
μ(aγc, x) ≥ μ(a, a) ∧ μ(aγc, x) = 1 ∧ μ(aγc, x) = μ(aγc, x)∀x ∈ S. Hence
μaγμc ≤ μbγμc. Similarly we obtain μcγμa ≤ μcγμb. Hence S/μ is commutative
po-Γ-semigroup. �

Applying the same argument as above we obtain the following result.

Proposition 4.14. Let S be a po-semigroup and μ ∈ OFSC(S). Then S/μ is
a commutative po-semigroup under multiplication ∗ defined by μa∗μb = μab and
with respect to the partial order ≤ where μa ≤ μb if and only if μ(a, x) ≤ μ(b, x)
∀x ∈ S.

If the composition of fuzzy congruences, ◦, is commutative in both FSC(S)
and FSC(L) then < FSC(S), ◦,∩ > and < FSC(L), ◦,∩ > both become
lattices.

Proposition 4.15. Let S be a Γ-semigroup with unities and L be its opera-
tor semigroup. Then there exists a lattice isomorphism between FSC(S) and
FSC(L) via the mapping σ → σ+′

.

Proof. By the proof of Theorem 4.11 we see that the map is inclusion preserv-
ing. So it is sufficient to prove that (μ∩ν)+

′
= μ+′∩ν+′

and (μ◦ν)+
′
= μ+′◦ν+′

∀μ, ν ∈ FSC(S). Let [x, α], [y, β] ∈ L. Then

(μ ∩ ν)+
′
([x, α], [y, β]) = inf

s∈S
(μ ∩ ν)(xαs, yβs)

= inf
s∈S

{μ(xαs, yβs) ∧ ν(xαs, yβs)}
= inf

s∈S
μ(xαs, yβs) ∧ inf

s∈S
ν(xαs, yβs)

= μ+′
([x, α], [y, β])∧ ν+′

([x, α], [y, β])

= (μ+′ ∩ ν+′
)([x, α], [y, β]).
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(μ ◦ ν)+
′
([x, α], [y, β]) = inf

s∈S
(μ ◦ ν)(xαs, yβs)

= inf
s∈S

sup
z∈S

{μ(xαs, z)∧ ν(z, yβs)}
≥ inf

s∈S
sup

zγs∈S
{μ(xαs, zγs) ∧ ν(zγs, yβs)}

≥ sup
zγs∈S

{ inf
s∈S

μ(xαs, zγs) ∧ inf
s∈S

ν(zγs, yβs)}

≥ (μ+′ ◦ ν+′
)([x, α], [y, β]).

Again

(μ+′ ◦ ν+′
)([x, α], [y, β]) = sup

[z,γ]∈L

{μ+′
([x, α], [z, γ])∧ ν+′

([z, γ], [y, β])}

= sup
[z,γ]∈L

{ inf
s∈S

μ(xαs, zγs) ∧ inf
s∈S

ν(zγs, yβs)}

= inf
s∈S

sup
[z,γ]∈L

{μ(xαs, zγs) ∧ ν(zγs, yβs)}

≥ inf
s∈S

sup
z∈S

{μ(xαs, zδs) ∧ ν(zδs, yβs)} , fixing γ by δ

≥ inf
s∈S

sup
z∈S

{μ(xαs, z) ∧ μ(z, zδs) ∧ ν(zδs, z)∧ ν(z, yβs)}
= inf

s∈S
{sup

z∈S
{μ(xαs, z) ∧ ν(z, yβs)} ∧ sup

z∈S
{ν(zδs, z) ∧ μ(z, zδs)}}

≥ (μ ◦ ν)+
′
([x, α], [y, β])∧ inf

s∈S
sup
z∈S

{μ(z, zδs) ∧ ν(zδs, z)}

= (μ ◦ ν)+
′
([x, α], [y, β])∧ 1, since μ, ν ∈ FSC(S)

= (μ ◦ ν)+
′
([x, α], [y, β]).

Hence the result follows. �

Theorem 4.16. Let S be a Γ-semigroup with unities and H be any sublattice
of the lattice < FSC(S), ◦,∩ >. Then H is a modular lattice.

Proof. Let H+′
= {μ+′

: μ ∈ FSC(S)}. Then H+′ ⊆ FSC(L). Clearly H+′

is a poset under the set inclusion ≤ in L. Since (μ ∩ ν)+
′

= μ+′ ∩ ν+′
and

(μ ◦ ν)+
′
= μ+′ ◦ ν+′

where μ, ν ∈ FSC(S)(cf. Prop 4.15), < H+′
, ◦,∩ > is a

sublattice of the lattice < FSC(L), ◦,∩ > . Hence by Theorem 5.7.21 of [10]
H+′

is a modular lattice. Now let μ ≤ σ in H. Then
μ(xαs, yβs) ≤ σ(xαs, yβs) ∀x, y, s ∈ S, ∀α, β ∈ Γ.

⇒ inf
s∈S

μ(xαs, yβs) ≤ inf
s∈S

σ(xαs, yβs) ∀x, y ∈ S, ∀α, β ∈ Γ.

⇒ μ+′
([x, α], [y, β]) ≤ σ+′

([x, α], [y, β]) ∀x, y ∈ S, ∀α, β ∈ Γ.
⇒ μ+′ ≤ σ+′

in H+′
.

⇒ (μ+′◦ν+′
)∩σ+′ ≤ μ+′◦(ν+′∩σ+′

) ∀ν+′ ∈ H+′
, since H+′

is modular lattice
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⇒ (μ ◦ ν)+
′ ∩ σ+′ ≤ μ+′ ◦ (ν ∩ σ)+

′ ∀ν ∈ H.
⇒ {(μ ◦ ν)∩ σ}+′ ≤ {μ ◦ (ν ∩ σ)}+′ ∀ν ∈ H.
⇒ ({(μ ◦ ν)∩ σ}+′

)+ ≤ ({μ ◦ (ν ∩ σ)}+′
)+ ∀ν ∈ H.

⇒ (μ ◦ ν)∩ σ ≤ μ ◦ (ν ∩ σ) ∀ν ∈ H. Hence H is a modular lattice.
�
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