FUZZY RADICALS OF Γ -SEMIRINGS

Sarbani Goswami^{*} and Sujit Kumar Sardar[†]

*Lady Brabourne College Kolkata, W.B., India E-mail: sarbani7<u>-</u>goswami@yahoo.co.in [†]Department of Mathematics Jadavpur University, Kolkata E-mail: sksardarjumath@gmail.com

Abstract

In this paper we introduce the notions of fuzzy prime radical and fuzzy nil radical of a fuzzy ideal in Γ -semiring and obtain some characterizations of these radicals. We also introduce the notion of Fuzzy primary ideal of a Γ -semiring and study it using fuzzy prime radical. Among other results we prove that in a commutative Γ -semiring, the concepts of fuzzy prime radical and fuzzy nil radical of a fuzzy ideal coincide.

1 Introduction

The notion of fuzzy set was introduced by Zadeh[14] in 1965. This concept has been used in various branches of mathematics since its inception. Rosenfeld, Kuroki and Jun have contributed a lot in applying this concept to group theory, semigroup theory and Γ -ring theory respectively. Fuzzy prime radical of a fuzzy ideal was studied by Dutta et al in Γ -ring[4]. Dutta and Biswas also studied fuzzy prime radical of a fuzzy ideal in semiring[1]. The present authors have initiated the study of Γ -semiring in terms of fuzzy subsets[8],[9], [10], [11], [13]. This paper is a sequel to this study. Here we introduce the notion of a fuzzy prime radical and fuzzy nil radical of a fuzzy ideal in Γ -semiring. We also introduce the notion of Fuzzy primary ideal of a Γ -semiring and obtained some important results as mentioned in the abstract.

Key words: Fuzzy prime radical, Fuzzy nil radical, Fuzzy primary ideal, Fuzzy prime ideal, Fuzzy semiprime ideal, Γ-semiring, left (right) operator semiring. 2000 AMS Mathematics Subject Classification: 16Y60, 16Y99, 03E72

For preliminaries on Γ -semiring and its operator semirings we refer to [5], [6], [7]. Also for preliminaries on fuzzy ideals of a Γ -semiring we refer to [8],[11], [12], [13].

2 Fuzzy prime radical of Γ -semirings.

The set of fuzzy ideals of a Γ -semiring S, the set of fuzzy prime ideals of S, the set of fuzzy prime ideals of the left operator semiring L of S and the set of fuzzy prime ideals of the right operator semiring R of S are denoted by FI(S), FPI(S), FPI(L) and FPI(R) respectively.

Definition 2.1. Let μ be a non empty fuzzy subset of a Γ -semiring S. Let us define $\overline{\mu} = \{\theta : \theta \in FPI(S), \mu \subseteq \theta\}.$

By routine verification we have the following proposition.

Proposition 2.2. Let μ_1, μ_2 be two fuzzy subsets of a Γ -semiring S. Then (i) $\mu_1 \subseteq \mu_2$ implies that $\overline{\mu_2} \subseteq \overline{\mu_1}$, (ii) $\overline{\mu_1} \cup \overline{\mu_2} \subseteq \overline{\mu_1 \cap \mu_2}$, (iii) $\overline{\mu_1} \cup \overline{\mu_2} = \overline{\mu_1 \cap \mu_2}$, if μ_1, μ_2 are two fuzzy ideals of S. (iv) $\overline{\mu_1} \cup \overline{\mu_2} = \overline{\mu_1} \circ \mu_2$, if μ_1, μ_2 are two fuzzy ideals of S. (v) $\overline{\lambda_I} \cup \overline{\lambda_J} = \overline{\lambda_{I\cap J}}$, if I and J are two ideals of S.

Definition 2.3. Let μ be a fuzzy ideal of a Γ -semiring S. Then the fuzzy subset $PR(\mu)$ of S, defined by $PR(\mu) = \cap \overline{\mu} = \cap \{\theta \in FPI(S) : \mu \subseteq \theta\}$ is said to be the fuzzy prime radical of μ .

Proposition 2.4. Let μ be a fuzzy ideal of a Γ -semiring S. Then $PR(\mu)$ is a fuzzy semiprime ideal of S.

Proof. Let μ be a fuzzy ideal of a Γ -semiring S. As $\theta(0) = 1$ for $\theta \in FPI(S)$, so $PR(\mu)(0) = 1$ (cf. Theorem 3.6[12]). Again if $\theta \in FPI(S)$ then θ is nonconstant fuzzy ideal of S (cf. Definition 3.1[11]). Let $x \in S$. Then, $\theta(x) \neq \theta(x)$ $\theta(0) = 1$ for some $x \in S$. i.e., $\theta(x) < 1$ for some $x \in S$. Thus $PR(\mu)(x) \neq 1$ for some $x \in S$. Hence $PR(\mu)$ is non-constant fuzzy subset of S. Now for any $x, y \in S, PR(\mu)(x+y) = \cap \overline{\mu}(x+y) = \inf\{\theta(x+y) : \theta \in FPI(S) \mid \mu \subseteq \theta\}$ $\geq \inf\{\min[\theta(x), \theta(y)] : \theta \in FPI(S) \mid \mu \subseteq \theta\} = \min[\inf\{\theta(x) : \theta \in FPI(S) \mid \mu \subseteq \theta\} = \min[\inf\{\theta(x) : \theta \in FPI(S) \mid \mu \subseteq \theta\} = \min[\inf\{\theta(x), \theta(y)\} = 0$ $\mu \subseteq \theta$, $\inf\{\theta(y) : \theta \in FPI(S) \mid \mu \subseteq \theta\} = \min[\cap \overline{\mu}(x), \cap \overline{\mu}(y)] = \min[PR(\mu)(x), \neg \overline{\mu}(y)]$ $PR(\mu)(y)$]. Again $PR(\mu)(x\gamma y) = \cap \overline{\mu}(x\gamma y) = \inf\{\theta(x\gamma y) : \theta \in FPI(S) \mid \mu \subseteq \varphi(x\gamma y)\}$ θ $\geq \inf\{\theta(y) : \theta \in FPI(S) \mid \mu \subseteq \theta\} = (\cap \overline{\mu})(y) = PR(\mu)(y)$. Similarly we can show that $PR(\mu)(x\gamma y) \ge PR(\mu)(x)$. Thus $PR(\mu)$ is a non-constant fuzzy ideal of S. Now $\inf[PR(\mu)(x\gamma_1s\gamma_2x): s \in S, \gamma_1, \gamma_2 \in \Gamma] = \inf[\cap \overline{\mu}(x\gamma_1s\gamma_2x):$ $s \in S, \gamma_1, \gamma_2 \in \Gamma$] = inf[inf[$\theta(x\gamma_1 s\gamma_2 x) : \theta \in FPI(S) \mid \mu \subseteq \theta$] : $s \in S, \gamma_1, \gamma_2 \in S$ Γ] = inf[$\theta(x) : \theta \in FPI(S) \mid \mu \subseteq \theta$] (cf. Proposition 3.6 and Proposition 3.2 of $[13] = \bigcap \overline{\mu}(x) = PR(\mu)(x)$. Hence $PR(\mu)$ is a fuzzy semiprime ideal of S.

Proposition 2.5. Let μ and θ be two fuzzy ideals of a Γ -semiring S. Then (i) $PR(\mu)(0) = 1$, (ii) $\mu \subseteq PR(\mu)$, (iii) $\mu \subseteq \theta$ implies that $PR(\mu) \subseteq PR(\theta)$, (iv) $PR(PR(\mu)) = PR(\mu)$, (v) $PR(\mu \oplus \theta) = PR(PR(\mu) \oplus PR(\theta))$ where $\mu(0) = \theta(0) = 1$.

Proof. Proof of (i), (ii) and (iii) are simple, so we omit it.

(iv) Since $\mu \subseteq PR(\mu)$, we have from (iii),

$$PR(\mu) \subseteq PR(PR(\mu)) \tag{1}$$

Again for $\phi \in \overline{\mu}$, $PR(\underline{\mu}) \subseteq \phi$ and $\phi \in FPI(S)$. So $\phi \in \overline{PR(\mu)}$ and consequently $\overline{\mu} \subseteq \overline{PR(\mu)}$. Hence $\cap \overline{PR(\mu)} \subseteq \cap \overline{\mu}$. i.e.,

$$PR(PR(\mu)) \subseteq PR(\mu) \tag{2}$$

Combining (1) and (2) we have, $PR(PR(\mu)) = PR(\mu)$.

(v) We have $\mu \subseteq PR(\mu)$ and $\theta \subseteq PR(\theta)$. So $\mu \oplus \theta \subseteq PR(\mu) \oplus PR(\theta)$ and hence $PR(\mu) \oplus PR(\theta) \subseteq PR(\theta) \oplus PR(\theta)$ (2)

$$PR(\mu \oplus \theta) \subseteq PR(PR(\mu) \oplus PR(\theta)).$$
(3)

Again $\mu \subseteq \mu \oplus \theta$ and $\theta \subseteq \mu \oplus \theta$ when $\mu(0) = \theta(0) = 1$. Thus $PR(\mu) \subseteq PR(\mu \oplus \theta)$ and $PR(\theta) \subseteq PR(\mu \oplus \theta)$. So $PR(\mu) \oplus PR(\theta) \subseteq PR(\mu \oplus \theta) \oplus PR(\mu \oplus \theta) = PR(\mu \oplus \theta)$. Thus,

$$PR(PR(\mu) \oplus PR(\theta)) \subseteq PR(PR(\mu \oplus \theta)) = PR(\mu \oplus \theta).$$
(4)

Combining (3) and (4) we have, $PR(\mu \oplus \theta) = PR(PR(\mu) \oplus PR(\theta))$.

Proposition 2.6. Suppose μ is a fuzzy prime ideal of a Γ -semiring S. Then $PR(\mu) = \mu$.

Proof follows from Definition 2.3 and Proposition 2.5(ii).

Definition 2.7. The fuzzy prime radical of a Γ -semiring S is defined as the intersection of all fuzzy prime ideals of S and is denoted by PR(S).

Theorem 2.8. If PR(L) is a fuzzy prime radical of a left operator semiring L of S, then $(PR(L))^+ = PR(S)$ and $(PR(S))^{+'} = PR(L)$.

Proof. Let μ be a fuzzy prime ideal of S. Then $\mu^{+'}$ is a fuzzy prime ideal of L (*cf. Proposition 3.3[12]*). Let $\theta = \mu^{+'}$. Then $\theta^+ = (\mu^{+'})^+ = \mu$. Now $PR(S) = \cap \{\mu : \mu \in FPI(S)\} \subseteq \cap \{\theta^+ : \theta \in FPI(L)\} = [\cap \{\theta : \theta \in FPI(L)\}]^+ = [PR(L)]^+$. Again, $PR(S) = \cap \{\mu : \mu \in FPI(S)\} = \cap \{\theta^+ : \theta \in \Lambda, a \text{ subcollection of FPI(L)}\} \supset \cap \{\theta^+ : \theta \in FPI(L)\} = [\cap \{\theta : \theta \in FPI(L)\}]^+ = [PR(L)]^+$. Thus $PR(S) = [PR(L)]^+$. Similarly we can prove that $[PR(S)]^{+'} = [PR(L)]$. \Box

Corollary 2.9. If PR(L) is the fuzzy prime radical of L, then $[[PR(S)]^{+'}]^+ = PR(S)$ and $[[PR(L)]^+]^{+'} = PR(L)$.

Similarly, we can prove that $(PR(S))^{*'} = PR(R)$, $(PR(R))^* = PR(S)$, $[[PR(S)]^{*'}]^* = PR(S)$ and $[[PR(R)]^*]^{*'} = PR(R)$ where PR(R) is the fuzzy prime radical of the right operator semiring R of S.

Theorem 2.10. For a Γ -semiring S, $[PR(R)]^* = [PR(L)]^+$.

The proof follows from the fact that $[PR(R)]^* = PR(S) = [PR(R)]^+$.

3 Fuzzy primary ideal of a Γ -semiring.

Throughout this section S denotes a commutative Γ -semiring with unities.

Definition 3.1. An ideal I of a Γ -semiring S is called a primary ideal of S if for any two ideals A and B, $A\Gamma B \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq PR(I)$ where PR(I) is the prime radical of I defined by $PR(I) = \cap \{P : P \text{ is a prime} ideal of S such that <math>I \subseteq P\}$.

Definition 3.2. A fuzzy ideal μ of a Γ -semiring S is called a fuzzy primary ideal of S if μ is non-constant and for any two fuzzy ideals σ , θ of S, $\sigma\Gamma\theta \subseteq \mu$ implies $\sigma \subseteq \mu$ or $\theta \subseteq PR(\mu)$.

Theorem 3.3. Let $\mu \in FI(S)$. Then μ is a fuzzy primary ideal of S if and only if μ is non-constant and $\sigma \circ \theta \subseteq \mu$ where $\sigma, \theta \in FI(S)$ implies that either $\sigma \subseteq \mu$ or $\theta \subseteq PR(\mu)$.

Proof. The proof follows from Proposition 2.8[13].

Lemma 3.4. If $\mu \in FI(S)$ such that $\mu(0) = 1$ then $PR(\mu_0) \subseteq (PR(\mu))_0$.

Proof. Let $x \in PR(\mu_0)$. Then $x \in P$ for all prime ideals P of S such that $\mu_0 \subseteq P$. Let $\theta \in FPI(S)$ such that $\mu \subseteq \theta$. Let $s \in \mu_0$. Then $\mu(s) = \mu(0) = 1 = \theta(s)$. Thus $s \in \theta_0$. Hence $\mu_0 \subseteq \theta_0$. Also θ_0 is a prime ideal of S (*cf. Theorem 3.6[12]*), so $x \in \theta_0$. Therefore $\theta(x) = \theta(0) = 1$. Now $(PR(\mu))(x) = (\cap \overline{\mu})(x) = \inf[\theta(x) : \theta \in FPI(S), \ \mu \subseteq \theta] = 1 = (PR(\mu))(0)$. Thus $x \in (PR(\mu))_0$. Hence $PR(\mu_0) \subseteq (PR(\mu))_0$.

Lemma 3.5. An ideal Q of S is primary if and only if for any $a, b \in S$, $(a)\Gamma(b) \subseteq Q$ implies that $a \in Q$ or $b \in PR(Q)$.

Proof. The only if part follows from the definition of a primary ideal (cf. Definition 3.1). Next, let $(a)\Gamma(b) \subseteq Q$ implies that $a \in Q$ or $b \in PR(Q)$. Also let A and B be two ideals of S such that $A\Gamma B \subseteq Q$ and $A \not\subseteq Q$. Then there exists $x \in A \cap Q^c$. Now for any $y \in B$ we have $(x)\Gamma(y) \subseteq Q$ and hence $y \in PR(Q)$. Consequently, $B \subseteq PR(Q)$ and so Q is primary.

Theorem 3.6. An ideal Q of S is primary if and only if $a\Gamma S\Gamma b \subseteq Q$ implies that $a \in Q$ or $b \in PR(Q)$.

Proof. Suppose Q is primary. Let $a, b \in S$ such that $a\Gamma S\Gamma b \subseteq Q$ and $b \notin PR(Q)$. Then any element of $(a)\Gamma(b)$ is a finite sum of elements of the form $(na + c\alpha a + a\beta d + e\gamma a\delta f)\rho(mb + g\mu b + b\nu h + j\xi b\eta k)$, each of which is in Q, hence $(a)\Gamma(b) \subseteq Q$ and hence by Lemma 3.5, $a \in Q$.

Conversely, suppose $a\Gamma S\Gamma b \subseteq Q$ implies that $a \in Q$ or $b \in PR(Q)$. Also let A and B be two ideals of S such that $A\Gamma B \subseteq Q$ and $A \not\subseteq Q$. Then there exists $x \in A \cap Q^c$. Now for any $y \in B$ we have $x\Gamma S\Gamma y \subseteq Q$ and hence $y \in PR(Q)$. Consequently, $B \subseteq PR(Q)$ and so Q is primary.

Theorem 3.7. Let μ be a fuzzy subset of a Γ -semiring S. If (i) $\mu(0) = 1$, (ii) μ_0 is a primary ideal of S and (iii) $\mu(S) = \{1, t\}$ where $t \in [0, 1)$ then μ is a fuzzy primary ideal of S.

Proof. From the condition (iii), μ is non-constant. Also μ is a fuzzy ideal of S as μ_0 is an ideal of S. Let $\sigma, \theta \in FI(S)$ such that $\sigma\Gamma\theta \subseteq \mu$. Let $\sigma \not\subseteq \mu$ and $\theta \not\subseteq PR(\mu)$. Then there exist $x, y \in S$ such that $\sigma(x) > \mu(x)$ and $\theta(y) > (PR(\mu))(y)$. Since $\mu(0) = 1 = (PR(\mu))(0), x \notin \mu_0$ and $y \notin (PR(\mu))_0$. So by Lemma 3.4, $y \notin PR(\mu_0)$. Hence $x\Gamma S\Gamma y \not\subseteq \mu_0$ as μ_0 is a primary ideal of S (cf. Theorem 3.6). Hence $\mu(x\gamma_1s\gamma_2y) = t \neq 1$, for some $\gamma_1, \gamma_2 \in \Gamma$, $s \in S$. Again $\mu(x) \neq 1$. So $\mu(x) = t$, by condition (ii). Hence $\sigma(x) > \mu(x) = t$. Again since $\mu(y) \leq (PR(\mu))(y) < \theta(y), \ \mu(y) \neq 1$. So $t = \mu(y) < \theta(y)$. Now $t = \mu(x\gamma_1s\gamma_2y) \geq (\sigma\Gamma\theta)(x\gamma_1s\gamma_2y) \geq \min[\sigma(x), \theta(y)] > t$ which is a contradiction. Hence μ is a fuzzy primary ideal of S.

Corollary 3.8. If Q is a primary ideal of S, then λ_Q is a fuzzy primary ideal of S.

Proposition 3.9. If μ be a non-constant fuzzy ideal of S then $\overline{\mu} \neq \phi$.

Proof. Since μ is not constant, there exists $s \in S$ such that $\mu(s) \neq \mu(0)$. Let $\mu(s) < t < \mu(0)$. Then $\mu_t \neq S$. Again μ_t is an ideal of S (*cf. Proposition 2.8[8]*). So there exists a prime ideal P of S such that $\mu_t \subseteq P \subset S$ (*cf. [7]*). Let σ be a fuzzy subset of S defined by

$$\sigma(x) = \begin{cases} 1 & \text{if } x \in P \\ t & \text{if } x \notin P \end{cases}$$

Then σ is a fuzzy prime ideal of S (cf. Theorem 3.4[11]). Let $x \in S$. Then either $\mu(x) \geq t$ or $\mu(x) < t$. If $\mu(x) < t$ then $x \notin \mu_t \subseteq P$ which implies that $\sigma(x) = t$. So $\mu(x) < \sigma(x)$. Again if $\mu(x) \geq t$ then $x \in \mu_t \subseteq P$ whence $\sigma(x) = 1$. Then $\mu(x) \leq \sigma(x)$. Hence $\mu(x) \leq \sigma(x)$ for all $x \in S$. Thus $\mu \subseteq \sigma$ and consequently, $\sigma \in \overline{\mu}$. Hence $\overline{\mu} \neq \phi$. **Proposition 3.10.** Let $\sum_{i=1}^{n} [\delta_i, e_i], \ \delta_i \in \Gamma, \ e_i \in S \ (i = 1, 2, ..., n)$ be the right unity of S and μ be a non-constant fuzzy ideal of S. Let $s \in S$ be such that $\min\{\mu(e_i)\} < \mu(s)$. Then there exists $e \in \{e_i : i = 1, 2, ..., n\}$ such that $(PR(\mu))(e) < \mu(s).$

Proof. Let $\mu(s) = p$ and $\min_{i} \{\mu(e_i)\} = t = \mu(e')$ where $e' \in \{e_i : i = e_i \}$ 1,2,...,n}. Let t < r < p. Then μ_r is a proper ideal of S as $e' \notin \mu_r$. Let P be a prime ideal of S such that $\mu_r \subseteq P \subset S$. Let θ be a fuzzy subset of S defined by

$$\theta(s) = \begin{cases} 1 & \text{if } s \in P \\ r & \text{if } s \notin P \end{cases}$$

Then as in Proposition 3.9 we can prove $\theta \in \overline{\mu}$. Now since P is a proper ideal of S, there exists at least one $e \in \{e_i : i = 1, 2, \dots, n\}$ such that $e \notin P$. Otherwise if $e \in P$ for all i = 1, 2, ..., n then $x = \sum x \delta_i e_i \in P$, for all $x \in S$ and then P = S, a contradiction. Hence $\theta(e) = \overset{i}{r}$. Again $\theta \in \overline{\mu}$, so $PR(\mu) \subseteq \theta$.

Therefore $(PR(\mu))(e) \le \theta(e) = r$

Lemma 3.11. If $\mu \in FI(S)$ such that $Im \ \mu = \{1, t\}$ where $t \in [0, 1)$ then $(PR(\mu))_0 = PR(\mu_0).$

Proof. Let $x \in (PR(\mu))_0$. Then $(PR(\mu))(x) = (PR(\mu))(0) = 1$. So for $\theta \in \overline{\mu}$, $\theta(x) = 1$. Thus $x \in \theta_0$ for every $\theta \in \overline{\mu}$. Let P be a prime ideal of S such that $\mu_0 \subseteq P$. Now let us define a fuzzy subset σ of S defined by

$$\sigma(x) = \begin{cases} 1 & \text{if } x \in P \\ s & \text{if } x \notin P \end{cases}$$

where $s \in [0, 1)$, s > t. Then σ is a fuzzy prime ideal of S (cf. Theorem 3.4[11]) such that $\mu \subseteq \sigma$. Hence $x \in \sigma_0 = P$. Thus $x \in \cap \{P : P \text{ is a prime ideal of S}\}$ and $\mu_0 \subseteq P$. i.e., $x \in PR(\mu_0)$. Thus we have $(PR(\mu))_0 \subseteq PR(\mu_0)$. Again by Lemma 3.4, $PR(\mu_0) \subseteq (PR(\mu))_0$. Hence $(PR(\mu))_0 = PR(\mu_0)$.

Theorem 3.12. Let μ be a fuzzy primary ideal of S. Then (i) $\mu(0) = 1$, (ii) $|\mu(S)| = 2$ and (iii) μ_0 is a primary ideal of S.

Proof. (i) Let $\mu(0) = s < 1$ and $\min_{i} \mu(e_i) = r$ where $\sum_{i=1}^{n} [\delta_i, e_i]$ is the right unity of S. Then by Proposition 3.10 there exists $e \in \{e_i : i = 1, 2, ..., n\}$ such that $(PR(\mu))(e) = t < \mu(0) = s$. Let $s < q \le 1$. Again $r = \min_i \mu(e_i) \le \mu(e) \le \mu(e)$

Hence μ_0 is a primary ideal of S.

 $(PR(\mu))(e) = t$ (cf. Proposition 2.5). So we have $r \le t < s < q \le 1$. Let σ, θ be two fuzzy subsets of S defined by $\sigma(x) = s$ for all $x \in S$ and

$$\theta(x) = \begin{cases} q & \text{if } x \in \mu_0 \\ r & \text{if } x \notin \mu_0 \end{cases}$$

Then σ, θ are fuzzy subsets of S. Let $x \in S$. If $x \in \mu_0$. Then $\mu(x) = s$ and

$$(\theta\Gamma\sigma)(x) = \begin{cases} \sup_{\substack{x=u\gamma v\\0 \text{ otherwise}}} [\min[\theta(u), \sigma(v)] : u, v \in S; \gamma \in \Gamma] = s \end{cases}$$

Therefore, $(\theta\Gamma\sigma)(x) \leq s = \mu(x)$. Now if $x \notin \mu_0$ then $\theta(x) = r$. In that case, $(\theta\Gamma\sigma)(x) = r = \min_i \mu(e_i) \leq \mu(x)$. So $\theta\Gamma\sigma \subseteq \mu$. Now $\theta(0) = q > s = \mu(0)$ which implies that $\theta \not\subseteq \mu$. Again for some $e \in \{e_i : i = 1, 2, ..., n\}$, $\sigma(e) = s > t = (PR(\mu))(e)$. This implies that $\sigma \not\subseteq PR(\mu)$. Thus $\theta \not\subseteq \mu$ and $\sigma \not\subseteq PR(\mu)$ but $\theta\Gamma\sigma \subseteq \mu$, which is a contradiction to the assumption that μ is a fuzzy primary ideal of S. Hence $\mu(0) = 1$.

(ii) Since μ is not constant, $|\mu(S)| \ge 2$. Let us suppose that $|\mu(S)| \ge 3$. Let $\min_i \mu(e_i) = r$. Then there exists $s \in \mu(S)$ such that r < s < 1 as $\mu(e_i) \le \mu(x)$ for all $x \in S$ and for all $i = 1, 2, \dots, n$. Let $t \in S$ be such that $\mu(t) = s$. Then there exists $e \in \{e_i : i = 1, 2, \dots, n\}$ such that $(PR(\mu))(e) < \mu(t)$. Let σ, θ be two fuzzy ideals of S defined by $\sigma(x) = s$ for all $x \in S$ and

$$\theta(x) = \begin{cases} 1 & \text{if } x \in \mu_s \\ r & \text{if } x \notin \mu_s \end{cases}$$

Then σ, θ are fuzzy subsets of S and $\theta\Gamma\sigma \subseteq \mu$. Now $\theta(t) = 1 > s = \mu(t)$. Thus $\theta \not\subseteq \mu$. Also $\sigma(e) = s = \mu(t) > (PR(\mu))(e)$. Hence $\sigma \not\subseteq PR(\mu)$. Thus $\theta \not\subseteq \mu$ and $\sigma \not\subseteq PR(\mu)$ but $\theta\Gamma\sigma \subseteq \mu$, which is a contradiction. Hence $| \mu(S) | = 2$. (iii) Let A and B be two ideals of S such that $A\Gamma B \subseteq \mu_0$. Let $\sigma = \lambda_A$ and $\theta = \lambda_B$. Then $\sigma\Gamma\theta \subseteq \mu$ implies that either $\sigma \subseteq \mu$ or $\theta \subseteq PR(\mu)$. If $\sigma \subseteq \mu$ then $A \subseteq \mu_0$. If $\theta \subseteq PR(\mu)$ then $B \subseteq (PR(\mu))_0 \subseteq PR(\mu_0)$ by Proposition 3.11.

Corollary 3.13. Let I be an ideal of S such that λ_I is a fuzzy primary ideal of S. Then I is a primary ideal of S.

Proof. Since λ_I is a fuzzy primary ideal of S, $I = (\lambda_I)_0$ is a primary ideal of S.

Combining Theorem 3.7 and Theorem 3.12 we have the following Theorem.

Theorem 3.14. Let μ be a fuzzy ideal of S. Then μ is a fuzzy primary ideal of S if and only if (i) $\mu(0) = 1$, (ii) $| \mu(S) | = 2$ and (iii) μ_0 is a primary ideal of S.

4 Fuzzy nil radical of Γ -semiring

Throughout this section we assume that S is a commutative Γ -semiring.

Definition 4.1. Let I be an ideal of a Γ -semiring S. The subset \sqrt{I} of S defined by $\sqrt{I} = \{x \in S : x(\gamma x)^{n-1} \in I, \text{ for some } n \in Z^+, \text{ for all } \gamma \in \Gamma\}$ is called nil radical of I.

Definition 4.2. Let μ be a fuzzy ideal of a Γ -semiring S. Then the fuzzy subset $\sqrt{\mu}$ of S, defined by $\sqrt{\mu} = \sup_{n \in \mathbb{Z}^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1})$ is said to be the fuzzy nil radical of μ .

Proposition 4.3. Let I be an ideal of S and λ_I be its characteristic function. Then $\sqrt{\lambda_I} = \lambda_{\sqrt{I}}$.

Proof. Let I be an ideal of S and λ_I be its characteristic function. Let $x \in S$. If $x \in \sqrt{I}$ then $x(\gamma x)^{n-1} \in I$, for some $n \in Z^+$, for all $\gamma \in \Gamma$. Then $\lambda_I(x(\gamma x)^{n-1}) = 1$, for some $n \in Z^+$, for all $\gamma \in \Gamma$. Thus $\inf_{\gamma \in \Gamma} \lambda_I(x(\gamma x)^{n-1}) = 1$ for some $n \in Z^+$ and so $\sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \lambda_I(x(\gamma x)^{n-1}) = 1 = \lambda_{\sqrt{I}}(x)$. Thus $\sqrt{\lambda_I}(x) = \sum_{n \in Z^+} \sum_{\gamma \in \Gamma} \sum_{n \in Z^+} \sum_{n$

 $\lambda_{\sqrt{I}}(x)$ when $x \in \sqrt{I}$.

Now if $x \notin \sqrt{I}$ then for some $\gamma \in \Gamma$, $x(\gamma x)^{n-1} \notin I$ for all $n \in Z^+$. Therefore $\lambda_I(x(\gamma x)^{n-1}) = 0$ for some $\gamma \in \Gamma$ and for all $n \in Z^+$. Thus $\inf_{\gamma \in \Gamma} \lambda_I(x(\gamma x)^{n-1}) = 0$ for all $n \in Z^+$. So $\sqrt{\lambda_I}(x) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \lambda_I(x(\gamma x)^{n-1}) = 0 = \lambda_{\sqrt{I}}(x)$. Thus $\sqrt{\lambda_I}(x) = \lambda_{\sqrt{I}}(x)$ for all $x \in S$. Hence $\sqrt{\lambda_I} = \lambda_{\sqrt{I}}$.

Proposition 4.4. Let S be a commutative Γ -semiring with identity. If μ is a fuzzy ideal of S then $\sqrt{\mu}$ is a fuzzy ideal of S.

Proof. Let $x, y \in S$ and $\gamma \in \Gamma$. Since S is a commutative Γ -semiring with identity for $m, n \in Z^+$ we have

$$\begin{split} & (x+y)(\gamma(x+y)^{m+n-1}) = x(\gamma x)^{m-1}(\gamma \sum_{i=0}^{n} \binom{m+n}{i} x(\gamma x)^{n-i-1} y(\gamma y)^{i-1}) \\ & + y(\gamma y)^{n-1})(\gamma \sum_{i=n+1}^{m+n} \binom{m+n}{i} x(\gamma x)^{m+n-i-1} y(\gamma y)^{i-n-1}). \quad \text{Therefore} \\ & \mu((x+y)(\gamma(x+y)^{m+n-1})) \geq \min[\mu(x(\gamma x)^{m-1}(\gamma \sum_{i=0}^{n} \binom{m+n}{i} x(\gamma x)^{n-i-1} y(\gamma y)^{i-1})), \\ & \mu(y(\gamma y)^{n-1})(\gamma \sum_{i=n+1}^{m+n} \binom{m+n}{i} x(\gamma x)^{m+n-i-1} y(\gamma y)^{i-n-1})] \\ & \geq \min[\mu(x(\gamma x)^{m-1}), \mu(y(\gamma y)^{n-1})], \text{ for all } m, n \in Z^+. \end{split}$$

146

S. Goswami and S. K. Sardar

 $\begin{array}{ll} \operatorname{Now} \sqrt{\mu}(x+y) = \sup_{k\in Z^+} \inf_{\gamma\in\Gamma} \mu[(x+y)(\gamma(x+y))^{k-1}] \geq \sup_{m,n\in Z^+} \inf_{\gamma\in\Gamma} \mu[(x+y)(\gamma(x+y))^{m+n-1}] & \geq \sup_{m,n\in Z^+} \inf_{\gamma\in\Gamma} \min[\mu(x(\gamma x)^{m-1}), \mu(y(\gamma y)^{n-1})] = \min[\sup_{m\in Z^+} \inf_{\gamma\in\Gamma} \mu(x(\gamma x)^{m-1}), \sup_{n\in Z^+} \inf_{\gamma\in\Gamma} \mu(y(\gamma y)^{n-1})] = \min[\sqrt{\mu}(x), \sqrt{\mu}(y)]. \text{ Again } \sqrt{\mu}(x\gamma y) & = \sup_{n\in Z^+} \inf_{\delta\in\Gamma} \mu(x\gamma y)(\delta(x\gamma y))^{n-1} & \geq \sup_{n\in Z^+} \inf_{\delta\in\Gamma} \mu[y(\delta(x\gamma y))^{n-1}] \\ \geq \sup_{n\in Z^+} \inf_{\delta\in\Gamma} \mu[y(\delta y)^{n-1}] \text{ (since S is commutative)} = \sqrt{\mu}(y). \text{ Similarly } \sqrt{\mu}(x\gamma y) \geq \sqrt{\mu}(x). \text{ Hence } \sqrt{\mu} \text{ is a fuzzy ideal of S.} \end{array}$

Proposition 4.5. Let $\mu, \theta \in FI(S)$. Then the following are hold: (i) $\mu \subseteq \sqrt{\mu}$, (ii) $\mu \subseteq \theta$ implies that $\sqrt{\mu} \subseteq \sqrt{\theta}$, (iii) $\sqrt{\sqrt{\mu}} = \sqrt{\mu}$, (iv) $\sqrt{\mu} \in (\sqrt{\mu})_t$, (v) $\sqrt{\mu} \cap \sqrt{\theta} = \sqrt{\mu \cap \theta} = \sqrt{\mu \circ \theta}$, (vi) $\sqrt{\mu \oplus \theta} = \sqrt{\sqrt{\mu} \oplus \sqrt{\theta}}$, provided $\mu(0) = \theta(0) = 1$, (vii) $\sqrt{\mu_0} = (\sqrt{\mu})_0$.

Proof. (i) $\mu(x(\gamma x)^{n-1}) \geq \mu(x)$ for all $n \in Z^+$ and for all $\gamma \in \Gamma$. Thus $\inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) \geq \mu(x)$ for all $n \in Z^+$, implies that $\sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) \geq \mu(x)$. i.e., $\sqrt{\mu}(x) \geq \mu(x)$ for all $x \in S$. So, $\mu \subseteq \sqrt{\mu}$.

(ii) $\sqrt{\mu}(x) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) \leq \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \theta(x(\gamma x)^{n-1}) = \sqrt{\theta}(x)$ for all $x \in S$. Thus $\sqrt{\mu} \subseteq \sqrt{\theta}$.

(iii) $\sqrt{\sqrt{\mu}}(x) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \sqrt{\mu}(x(\gamma x)^{n-1}) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} [\sup_{m \in Z^+} \inf_{\delta \in \Gamma} \mu(y(\delta y)^{m-1})]$ where $y = x(\gamma x)^{n-1}$. i.e., $\sqrt{\sqrt{\mu}}(x) = \sup_{n \in Z^+} \sup_{m \in Z^+} \inf_{\eta \in \Gamma} \inf_{\delta \in \Gamma} \mu(y(\delta y)^{m-1})$ $\leq \sup_{p \in Z^+} \inf_{\beta \in \Gamma} \mu(x(\beta x)^{p-1}) = \sqrt{\mu}(x)$. Therefore $\sqrt{\sqrt{\mu}} \subseteq \sqrt{\mu}$. Again using (i) and (ii) we have $\sqrt{\mu} \subseteq \sqrt{\sqrt{\mu}}$ and hence $\sqrt{\sqrt{\mu}} = \sqrt{\mu}$.

(iv) Let $x \in \sqrt{\mu_t}$. Then $x(\gamma x)^{n-1} \in \mu_t$ for some $n \in Z^+$ and for all $\gamma \in \Gamma$. Thus $\mu(x(\gamma x)^{n-1}) \geq t$ for some $n \in Z^+$ and for all $\gamma \in \Gamma$. Therefore $\inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) \geq t$ for some $n \in Z^+$ and so $\sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) \geq t$ implies that $\sqrt{\mu}(x) \geq t$ and consequently, $x \in (\sqrt{\mu})_t$. Hence $\sqrt{\mu_t} \subseteq (\sqrt{\mu})_t$.

(v) We have
$$\mu \circ \theta \subseteq \mu \cap \theta \subseteq \mu$$
, θ . Thus from (ii), $\sqrt{\mu \circ \theta} \subseteq \sqrt{\mu \cap \theta} \subseteq \sqrt{\mu}$, $\sqrt{\theta}$.

Therefore $\sqrt{\mu \cap \theta} \subseteq \sqrt{\mu} \cap \sqrt{\theta}$. Thus

$$\sqrt{\mu \circ \theta} \subseteq \sqrt{\mu \cap \theta} \subseteq \sqrt{\mu} \cap \sqrt{\theta} \tag{1}$$

Again for $x \in S$, $\sqrt{\mu \circ \theta}(x) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} (\mu \circ \theta)(x(\gamma x)^{n-1}) =$ $= \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} [\sup[\inf_{1 \le i \le p} [\min[\mu(u_i), \theta(v_i)]] : x(\gamma x)^{n-1} = \sum_{i=1}^p u_i \delta_i v_i, u_i, v_i \in S, \gamma \in$ $\Gamma]] \ge \sup_{s,t \in Z^+} \inf_{\gamma \in \Gamma} \min[\mu(x(\gamma x)^{s-1}), \theta(x(\gamma x)^{t-1})] = \min[\sup_{s \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{s-1}), \theta(x(\gamma x)^{t-1})] =$ $\sup_{t \in Z^+} \inf_{\gamma \in \Gamma} \theta(x(\gamma x)^{t-1})] = \min[\sqrt{\mu}(x), \sqrt{\theta}(x)] = (\sqrt{\mu} \cap \sqrt{\theta})(x).$ Thus

$$\sqrt{\mu \circ \theta} \supseteq (\sqrt{\mu} \cap \sqrt{\theta}) \tag{2}$$

Combining (1) and (2) we get the result.

(vi) Since $\mu, \theta \subseteq \mu \oplus \theta$ as $\mu(0) = \theta(0) = 1$, it follows that $\sqrt{\mu}, \sqrt{\theta} \subseteq \sqrt{\mu \oplus \theta}$ [by (ii)]. Thus $\sqrt{\mu} \oplus \sqrt{\theta} \subseteq \sqrt{\mu \oplus \theta} \oplus \sqrt{\mu \oplus \theta} = \sqrt{\mu \oplus \theta}$. Therefore, by using (iii) we get

$$\sqrt{\sqrt{\mu} \oplus \sqrt{\theta}} \subseteq \sqrt{\sqrt{\mu \oplus \theta}} = \sqrt{\mu \oplus \theta} \tag{(A)}$$

Again $\mu \subseteq \sqrt{\mu}$ and $\theta \subseteq \sqrt{\theta}$. Therefore, by using (ii), $\mu \oplus \theta \subseteq \sqrt{\mu} \oplus \sqrt{\theta}$. i.e.,

$$\sqrt{\mu \oplus \theta} \subseteq \sqrt{\sqrt{\mu} \oplus \sqrt{\theta}} \tag{B}$$

Combining (A) and (B) we have, $\sqrt{\mu \oplus \theta} = \sqrt{\sqrt{\mu} \oplus \sqrt{\theta}}$.

(vii) For any $x \in S$, $x \in \sqrt{\mu_0} \Leftrightarrow x(\gamma x)^{n-1} \in \mu_0$ for some $n \in Z^+$, for all $\gamma \in \Gamma$ $\Leftrightarrow \mu(x(\gamma x)^{n-1}) = \mu(0)$ for some $n \in Z^+$, for all $\gamma \in \Gamma \Leftrightarrow \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) = \mu(0) = \sqrt{\mu}(0) \Leftrightarrow \sqrt{\mu}(x) = \mu(0) = \sqrt{\mu}(0) \Leftrightarrow x \in (\sqrt{\mu})_0$. Hence $\sqrt{\mu_0} = (\sqrt{\mu})_0$. \Box **Proposition 4.6.** Let $t \in [0, 1)$ and μ be a fuzzy ideal of S. Then $(\sqrt{\mu})_{[t]} = \sqrt{\mu_{[t]}}$.

Proof. For $x \in \sqrt{\mu_{[t]}} \Leftrightarrow x(\gamma x)^{n-1} \in \mu_{[t]}$ for some $n \in Z^+$, for all $\gamma \in \Gamma \Leftrightarrow \mu(x(\gamma x)^{n-1}) > t$ for some $n \in Z^+$, for all $\gamma \in \Gamma \Leftrightarrow \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) > t$ for some $n \in Z^+ \Leftrightarrow \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) > t \Leftrightarrow \sqrt{\mu}(x) > t \Leftrightarrow x \in (\sqrt{\mu})_{[t]}$. Hence $(\sqrt{\mu})_{[t]} = \sqrt{\mu_{[t]}}$.

Proposition 4.7. Let μ be a non constant fuzzy ideal of S. Then $\sqrt{\mu}$ is a fuzzy semiprime ideal of S.

S. Goswami and S. K. Sardar

Proof. Let $x \in S$. Now $\inf_{\gamma \in \Gamma} \sqrt{\mu}(x\gamma x) = \inf_{\gamma \in \Gamma} \sup_{n \in Z^+} \inf_{\delta \in \Gamma} \mu((x\gamma x)(\delta(x\gamma x))^{n-1})$ $= \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu((x\gamma x)(\gamma(x\gamma x))^{n-1}) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{2n-1}) \leq \sup_{m \in Z^+} \mu(x(\gamma x)^{m-1})$ $= \sqrt{\mu}(x)$. Thus $\inf_{\gamma \in \Gamma} \sqrt{\mu}(x\gamma x) \leq \sqrt{\mu}(x)$. Again $\sqrt{\mu}(x\gamma x) \geq \sqrt{\mu}(x)$ and so $\inf_{\gamma \in \Gamma} \sqrt{\mu}(x\gamma x) \geq \sqrt{\mu}(x)$. Hence $\inf_{\gamma \in \Gamma} \sqrt{\mu}(x\gamma x) = \sqrt{\mu}(x)$ and hence $\sqrt{\mu}$ is completely semiprime ideal of S and since S is commutative, we have $\sqrt{\mu}$ is fuzzy semiprime ideal of S. \Box

Proposition 4.8. If μ is a fuzzy prime ideal of S then $\sqrt{\mu} = \mu$.

Proof. Let $x \in S$. Since μ is a fuzzy prime ideal, it is fuzzy semiprime and so $\mu(x\gamma x) = \mu(x)$. Now $\mu(x(\gamma x)^2) = \mu(x\gamma(x\gamma x)) = \max[\mu(x), \mu(x\gamma x)] = \mu(x)$ as S is commutative (cf. Proposition 3.8[11]). In general we can show that $\mu(x(\gamma x)^n) = \mu(x)$. Now $\sqrt{\mu}(x) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x(\gamma x)^{n-1}) = \sup_{n \in Z^+} \inf_{\gamma \in \Gamma} \mu(x) = \mu(x)$.

Proposition 4.9. Let μ be a fuzzy ideal of S. Then $\sqrt{\mu} = PR(\mu)$.

Proof. Let θ be a fuzzy prime ideal of S such that $\mu \subseteq \theta$. Then by Proposition 4.5, $\sqrt{\mu} \subseteq \sqrt{\theta} = \theta$. Thus $\sqrt{\mu} \subseteq \cap \{\theta : \theta \in FPI(S) \mid \mu \subseteq \theta\}$ = $PR(\mu)$. So $\sqrt{\mu} \subseteq PR(\mu)$.

If possible let $\sqrt{\mu} \neq PR(\mu)$, then there exists an element $s \in S$ such that $\sqrt{\mu}(s) < (PR(\mu))(s)$. Let $\sqrt{\mu}(s) = t$. Then $s \notin (\sqrt{\mu})_{[t]}$. i.e., $s \notin \sqrt{\mu}_{[t]}$ by Proposition 4.6. Then there exists a prime ideal P of S such that $\mu_{[t]} \subseteq P$ and $s \notin P$ (cf. Theorem 3.14[7]). Let us define a fuzzy subset ϕ of S as follows

$$\phi(x) = \begin{cases} 1 & \text{if } x \in P \\ t & \text{if } x \notin P, \ 0 \le t < 1 \end{cases}$$

Then ϕ is a fuzzy prime ideal of S(cf. Theorem 3.4[11]). Now if $x \in P$ then $\phi(x) = 1$. So $\mu(x) \leq \phi(x)$. If $x \notin P$ then $x \notin \mu_{[t]}$. i.e., $\mu(x) \leq t = \phi(x)$. Thus $\mu(x) \leq \phi(x)$ for all $x \in S$ and so $\mu \subseteq \phi$. Now $\sqrt{\mu(s)} < (PR(\mu))(s) \leq \phi(s) = t = \sqrt{\mu(s)}$, a contradiction. Hence $\sqrt{\mu} = PR(\mu)$.

References

- [1] Biswas, B. K.: Ph. D. Dissertation(2000), University of Calcutta, India.
- [2] Dutta, T. K. and Biswas, B. K.: Structure of fuzzy ideals of semirings; Bull. Calcutta Math. Soc. 89(4) (1997), 271-284.
- [3] Dutta, T. K. and Biswas, B. K.: Fuzzy Prime Ideals Of A Semiring; Bull. Malaysian Math. Soc.(Second series) 17 (1994), 9-16.
- [4] Dutta, T.K. and Chanda, T.: Fuzzy Prime radical and Fuzzy Primary Ideal of a Γ-ring; (To appear) International Journal of Inequalities and Application.

- [5] Dutta, T.K. and Sardar, S.K.: On the Operator Semirings of a Γ-semiring; Southeast Asian Bull. of Math. 26(2002), 203-213.
- [6] Dutta, T.K. and Sardar, S.K.: On Prime Ideals and Prime Radicals of a Γ -semiring;
- [7] Dutta, T.K. and Sardar, S.K.: Semiprime Ideals And Irreducible Ideals of Γ-semiring; Novi Sad J. Math. 30(1)(2000), 97-108.
- [8] Dutta, T.K., Sardar, S.K. and Goswami, S.: An introduction to fuzzy ideals of Γ-semirings; Proceedings of National seminar on Algebra, Analysis and Discrete Mathematics, University of Kerala, India.
- [9] Dutta, T.K., Sardar, S.K. and Goswami, S.: Operations on fuzzy ideals of Γ-semirings; Communicated.
- [10] Sardar, S.K., Jun, Y.B. and Goswami, S.: Role of operator semirings in characterizing Γ-semirings in terms of fuzzy subsets; Communicated.
- [11] Sardar, S.K. and Goswami, S.: Fuzzy prime ideals of Γ-semirings; Bull. Cal. Math. Soc. 102(6) (2010), 499-504.
- [12] Sardar, S.K. and Goswami, S.: A note on characterization of fuzzy prime ideals of Γ-semirings via operator semirings; International Journal of Algebra. 4(18) (2010), 867-873.
- [13] Sardar, S.K. and Goswami, S.: Fuzzy Semiprime Ideals and Fuzzy Irreducible Ideals of Γ-semirings; Annals of Fuzzy Mathematics and Informatics. 2(1) (2011), 33-48.
- [14] Zadeh, L.A.: Fuzzy sets, Information and Control 8(1965), 338-353.