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Abstract

In this paper we introduce the notions of fuzzy prime radical and fuzzy
nil radical of a fuzzy ideal in Γ−semiring and obtain some characteriza-
tions of these radicals. We also introduce the notion of Fuzzy primary
ideal of a Γ−semiring and study it using fuzzy prime radical. Among
other results we prove that in a commutative Γ−semiring, the concepts
of fuzzy prime radical and fuzzy nil radical of a fuzzy ideal coincide.

1 Introduction

The notion of fuzzy set was introduced by Zadeh[14] in 1965. This concept has
been used in various branches of mathematics since its inception. Rosenfeld,
Kuroki and Jun have contributed a lot in applying this concept to group theory,
semigroup theory and Γ−ring theory respectively. Fuzzy prime radical of a
fuzzy ideal was studied by Dutta et al in Γ−ring[4]. Dutta and Biswas also
studied fuzzy prime radical of a fuzzy ideal in semiring[1]. The present authors
have initiated the study of Γ−semiring in terms of fuzzy subsets[8],[9], [10],
[11], [13]. This paper is a sequel to this study. Here we introduce the notion of
a fuzzy prime radical and fuzzy nil radical of a fuzzy ideal in Γ−semiring. We
also introduce the notion of Fuzzy primary ideal of a Γ−semiring and obtained
some important results as mentioned in the abstract.
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140 Fuzzy Radicals of Γ−semirings

For preliminaries on Γ−semiring and its operator semirings we refer to [5],
[6], [7]. Also for preliminaries on fuzzy ideals of a Γ−semiring we refer to
[8],[11], [12], [13].

2 Fuzzy prime radical of Γ−semirings.

The set of fuzzy ideals of a Γ−semiring S, the set of fuzzy prime ideals of S,
the set of fuzzy prime ideals of the left operator semiring L of S and the set
of fuzzy prime ideals of the right operator semiring R of S are denoted by
FI(S), FP I(S), FP I(L) and FPI(R) respectively.

Definition 2.1. Let μ be a non empty fuzzy subset of a Γ−semiring S. Let us
define μ = {θ : θ ∈ FPI(S), μ ⊆ θ}.

By routine verification we have the following proposition.

Proposition 2.2. Let μ1, μ2 be two fuzzy subsets of a Γ−semiring S. Then
(i) μ1 ⊆ μ2 implies that μ2 ⊆ μ1,
(ii) μ1 ∪ μ2 ⊆ μ1 ∩ μ2,
(iii) μ1 ∪ μ2 = μ1Γμ2, if μ1, μ2 are two fuzzy ideals of S.
(iv) μ1 ∪ μ2 = μ1 ◦ μ2, if μ1, μ2 are two fuzzy ideals of S.
(v) λI ∪ λJ = λI∩J , if I and J are two ideals of S.

Definition 2.3. Let μ be a fuzzy ideal of a Γ−semiring S. Then the fuzzy
subset PR(μ) of S, defined by PR(μ) = ∩μ = ∩{θ ∈ FPI(S) : μ ⊆ θ} is said
to be the fuzzy prime radical of μ.

Proposition 2.4. Let μ be a fuzzy ideal of a Γ−semiring S. Then PR(μ) is a
fuzzy semiprime ideal of S.

Proof. Let μ be a fuzzy ideal of a Γ−semiring S. As θ(0) = 1 for θ ∈ FPI(S),
so PR(μ)(0) = 1 (cf. Theorem 3.6[12]). Again if θ ∈ FPI(S) then θ is non-
constant fuzzy ideal of S (cf. Definition 3.1[11]). Let x ∈ S. Then, θ(x) �=
θ(0) = 1 for some x ∈ S. i.e., θ(x) < 1 for some x ∈ S. Thus PR(μ)(x) �= 1
for some x ∈ S. Hence PR(μ) is non-constant fuzzy subset of S. Now for any
x, y ∈ S, PR(μ)(x + y) = ∩μ(x + y) = inf{θ(x + y) : θ ∈ FPI(S) | μ ⊆ θ}
≥ inf{min[θ(x), θ(y)] : θ ∈ FPI(S) | μ ⊆ θ} = min[inf{θ(x) : θ ∈ FPI(S) |
μ ⊆ θ}, inf{θ(y) : θ ∈ FPI(S) | μ ⊆ θ}] = min[∩μ(x),∩μ(y)] = min[PR(μ)(x),
PR(μ)(y)]. Again PR(μ)(xγy) = ∩μ(xγy) = inf{θ(xγy) : θ ∈ FPI(S) | μ ⊆
θ} ≥ inf{θ(y) : θ ∈ FPI(S) | μ ⊆ θ} = (∩μ)(y) = PR(μ)(y). Similarly we
can show that PR(μ)(xγy) ≥ PR(μ)(x). Thus PR(μ) is a non-constant fuzzy
ideal of S. Now inf[PR(μ)(xγ1sγ2x) : s ∈ S, γ1 , γ2 ∈ Γ] = inf[∩μ(xγ1sγ2x) :
s ∈ S, γ1, γ2 ∈ Γ] = inf[inf[θ(xγ1sγ2x) : θ ∈ FPI(S) | μ ⊆ θ] : s ∈ S, γ1, γ2 ∈
Γ] = inf[θ(x) : θ ∈ FPI(S) | μ ⊆ θ] (cf. Proposition 3.6 and Proposition 3.2 of
[13])= ∩μ(x) = PR(μ)(x). Hence PR(μ) is a fuzzy semiprime ideal of S. �
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Proposition 2.5. Let μ and θ be two fuzzy ideals of a Γ−semiring S. Then
(i) PR(μ))(0) = 1,
(ii) μ ⊆ PR(μ),
(iii) μ ⊆ θ implies that PR(μ) ⊆ PR(θ),
(iv) PR(PR(μ)) = PR(μ),
(v) PR(μ ⊕ θ) = PR(PR(μ)⊕ PR(θ)) where μ(0) = θ(0) = 1.

Proof. Proof of (i), (ii) and (iii) are simple, so we omit it.

(iv) Since μ ⊆ PR(μ), we have from (iii),

PR(μ) ⊆ PR(PR(μ)) (1)

Again for φ ∈ μ, PR(μ) ⊆ φ and φ ∈ FPI(S). So φ ∈ PR(μ) and consequently
μ ⊆ PR(μ). Hence ∩PR(μ) ⊆ ∩μ. i.e.,

PR(PR(μ)) ⊆ PR(μ) (2)

Combining (1) and (2) we have, PR(PR(μ)) = PR(μ).

(v) We have μ ⊆ PR(μ) and θ ⊆ PR(θ). So μ⊕θ ⊆ PR(μ)⊕PR(θ) and hence

PR(μ ⊕ θ) ⊆ PR(PR(μ) ⊕ PR(θ)). (3)

Again μ ⊆ μ⊕θ and θ ⊆ μ⊕θ when μ(0) = θ(0) = 1. Thus PR(μ) ⊆ PR(μ⊕θ)
and PR(θ) ⊆ PR(μ ⊕ θ). So PR(μ) ⊕ PR(θ) ⊆ PR(μ ⊕ θ) ⊕ PR(μ ⊕ θ) =
PR(μ ⊕ θ). Thus,

PR(PR(μ)⊕ PR(θ)) ⊆ PR(PR(μ⊕ θ)) = PR(μ ⊕ θ). (4)

Combining (3) and (4) we have, PR(μ ⊕ θ) = PR(PR(μ)⊕ PR(θ)). �

Proposition 2.6. Suppose μ is a fuzzy prime ideal of a Γ−semiring S. Then
PR(μ) = μ.

Proof follows from Definition 2.3 and Proposition 2.5(ii).

Definition 2.7. The fuzzy prime radical of a Γ-semiring S is defined as the
intersection of all fuzzy prime ideals of S and is denoted by PR(S).

Theorem 2.8. If PR(L) is a fuzzy prime radical of a left operator semiring L
of S, then (PR(L))+ = PR(S) and (PR(S))+

′
= PR(L).

Proof. Let μ be a fuzzy prime ideal of S. Then μ+′
is a fuzzy prime ideal of L

(cf. Proposition 3.3[12]). Let θ = μ+′
. Then θ+ = (μ+′

)+ = μ. Now PR(S) =
∩{μ : μ ∈ FPI(S)} ⊆ ∩{θ+ : θ ∈ FPI(L)} = [∩{θ : θ ∈ FPI(L)}]+ =
[PR(L)]+. Again, PR(S) = ∩{μ : μ ∈ FPI(S)} = ∩{θ+ : θ ∈ Λ, a subcollec-
tion of FPI(L)} ⊃ ∩{θ+ : θ ∈ FPI(L)} = [∩{θ : θ ∈ FPI(L)}]+ = [PR(L)]+.
Thus PR(S) = [PR(L)]+. Similarly we can prove that [PR(S)]+

′
= [PR(L)].

�
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Corollary 2.9. If PR(L) is the fuzzy prime radical of L, then [[PR(S)]+
′
]+ =

PR(S) and [[PR(L)]+]+
′
= PR(L).

Similarly, we can prove that (PR(S))∗
′
= PR(R), (PR(R))∗ = PR(S),

[[PR(S)]∗
′
]∗ = PR(S) and [[PR(R)]∗]∗

′
= PR(R) where PR(R) is the fuzzy

prime radical of the right operator semiring R of S.

Theorem 2.10. For a Γ-semiring S, [PR(R)]∗ = [PR(L)]+.

The proof follows from the fact that [PR(R)]∗ = PR(S) = [PR(R)]+.

3 Fuzzy primary ideal of a Γ−semiring.

Throughout this section S denotes a commutative Γ−semiring with unities.

Definition 3.1. An ideal I of a Γ−semiring S is called a primary ideal of S if
for any two ideals A and B, AΓB ⊆ I implies that either A ⊆ I or B ⊆ PR(I)
where PR(I) is the prime radical of I defined by PR(I) = ∩{P : P is a prime
ideal of S such that I ⊆ P }.
Definition 3.2. A fuzzy ideal μ of a Γ−semiring S is called a fuzzy primary
ideal of S if μ is non-constant and for any two fuzzy ideals σ, θ of S, σΓθ ⊆ μ
implies σ ⊆ μ or θ ⊆ PR(μ).

Theorem 3.3. Let μ ∈ FI(S). Then μ is a fuzzy primary ideal of S if and
only if μ is non-constant and σ ◦ θ ⊆ μ where σ, θ ∈ FI(S) implies that either
σ ⊆ μ or θ ⊆ PR(μ).

Proof. The proof follows from Proposition 2.8[13]. �

Lemma 3.4. If μ ∈ FI(S) such that μ(0) = 1 then PR(μ0) ⊆ (PR(μ))0.

Proof. Let x ∈ PR(μ0). Then x ∈ P for all prime ideals P of S such that
μ0 ⊆ P . Let θ ∈ FPI(S) such that μ ⊆ θ. Let s ∈ μ0. Then μ(s) =
μ(0) = 1 = θ(s). Thus s ∈ θ0. Hence μ0 ⊆ θ0. Also θ0 is a prime ideal
of S (cf. Theorem 3.6[12]), so x ∈ θ0 . Therefore θ(x) = θ(0) = 1. Now
(PR(μ))(x) = (∩μ)(x) = inf[θ(x) : θ ∈ FPI(S), μ ⊆ θ] = 1 = (PR(μ))(0).
Thus x ∈ (PR(μ))0. Hence PR(μ0) ⊆ (PR(μ))0. �

Lemma 3.5. An ideal Q of S is primary if and only if for any a, b ∈ S,
(a)Γ(b) ⊆ Q implies that a ∈ Q or b ∈ PR(Q).

Proof. The only if part follows from the definition of a primary ideal (cf.
Definition 3.1). Next, let (a)Γ(b) ⊆ Q implies that a ∈ Q or b ∈ PR(Q).
Also let A and B be two ideals of S such that AΓB ⊆ Q and A �⊆ Q. Then
there exists x ∈ A ∩ Qc. Now for any y ∈ B we have (x)Γ(y) ⊆ Q and hence
y ∈ PR(Q). Consequently, B ⊆ PR(Q) and so Q is primary. �
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Theorem 3.6. An ideal Q of S is primary if and only if aΓSΓb ⊆ Q implies
that a ∈ Q or b ∈ PR(Q).

Proof. Suppose Q is primary. Let a, b ∈ S such that aΓSΓb ⊆ Q and b /∈
PR(Q). Then any element of (a)Γ(b) is a finite sum of elements of the form
(na + cαa + aβd + eγaδf)ρ(mb + gμb + bνh + jξbηk), each of which is in Q,
hence (a)Γ(b) ⊆ Q and hence by Lemma 3.5, a ∈ Q.

Conversely, suppose aΓSΓb ⊆ Q implies that a ∈ Q or b ∈ PR(Q). Also let A
and B be two ideals of S such that AΓB ⊆ Q and A �⊆ Q. Then there exists
x ∈ A ∩ Qc. Now for any y ∈ B we have xΓSΓy ⊆ Q and hence y ∈ PR(Q).
Consequently, B ⊆ PR(Q) and so Q is primary. �

Theorem 3.7. Let μ be a fuzzy subset of a Γ−semiring S. If (i) μ(0) = 1, (ii)
μ0 is a primary ideal of S and (iii) μ(S) = {1, t} where t ∈ [0, 1) then μ is a
fuzzy primary ideal of S.

Proof. From the condition (iii), μ is non-constant. Also μ is a fuzzy ideal
of S as μ0 is an ideal of S. Let σ, θ ∈ FI(S) such that σΓθ ⊆ μ. Let σ �⊆ μ
and θ �⊆ PR(μ). Then there exist x, y ∈ S such that σ(x) > μ(x) and θ(y) >
(PR(μ))(y). Since μ(0) = 1 = (PR(μ))(0), x /∈ μ0 and y /∈ (PR(μ))0. So by
Lemma 3.4, y /∈ PR(μ0). Hence xΓSΓy �⊆ μ0 as μ0 is a primary ideal of S
(cf. Theorem 3.6). Hence μ(xγ1sγ2y) = t �= 1, for some γ1, γ2 ∈ Γ, s ∈ S.
Again μ(x) �= 1. So μ(x) = t, by condition (ii). Hence σ(x) > μ(x) = t. Again
since μ(y) ≤ (PR(μ))(y) < θ(y), μ(y) �= 1. So t = μ(y) < θ(y). Now t =
μ(xγ1sγ2y) ≥ (σΓθ)(xγ1sγ2y) ≥ min[σ(x), θ(y)] > t which is a contradiction.
Hence μ is a fuzzy primary ideal of S. �

Corollary 3.8. If Q is a primary ideal of S, then λQ is a fuzzy primary ideal
of S.

Proposition 3.9. If μ be a non-constant fuzzy ideal of S then μ �= φ.

Proof. Since μ is not constant, there exists s ∈ S such that μ(s) �= μ(0). Let
μ(s) < t < μ(0). Then μt �= S. Again μt is an ideal of S (cf. Proposition
2.8[8]). So there exists a prime ideal P of S such that μt ⊆ P ⊂ S (cf. [7]).
Let σ be a fuzzy subset of S defined by

σ(x) =
{

1 if x ∈ P
t if x /∈ P

Then σ is a fuzzy prime ideal of S (cf. Theorem 3.4[11]). Let x ∈ S. Then
either μ(x) ≥ t or μ(x) < t. If μ(x) < t then x /∈ μt ⊆ P which implies
that σ(x) = t. So μ(x) < σ(x). Again if μ(x) ≥ t then x ∈ μt ⊆ P whence
σ(x) = 1. Then μ(x) ≤ σ(x). Hence μ(x) ≤ σ(x) for all x ∈ S. Thus μ ⊆ σ
and consequently, σ ∈ μ. Hence μ �= φ. �
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Proposition 3.10. Let
n∑

i=1

[δi, ei], δi ∈ Γ, ei ∈ S (i = 1, 2, ...., n) be the right

unity of S and μ be a non-constant fuzzy ideal of S. Let s ∈ S be such that
min

i
{μ(ei)} < μ(s). Then there exists e ∈ {ei : i = 1, 2, ......, n} such that

(PR(μ))(e) < μ(s).

Proof. Let μ(s) = p and min
i
{μ(ei)} = t = μ(e

′
) where e

′ ∈ {ei : i =

1, 2, ......, n}. Let t < r < p. Then μr is a proper ideal of S as e
′

/∈ μr. Let P be
a prime ideal of S such that μr ⊆ P ⊂ S. Let θ be a fuzzy subset of S defined
by

θ(s) =
{

1 if s ∈ P
r if s /∈ P

Then as in Proposition 3.9 we can prove θ ∈ μ. Now since P is a proper ideal of
S, there exists atleast one e ∈ {ei : i = 1, 2, ......, n} such that e /∈ P . Otherwise
if e ∈ P for all i = 1, 2, ......., n then x =

∑
i

xδiei ∈ P , for all x ∈ S and

then P = S, a contradiction. Hence θ(e) = r. Again θ ∈ μ, so PR(μ) ⊆ θ.
Therefore (PR(μ))(e) ≤ θ(e) = r < p < μ(s). �

Lemma 3.11. If μ ∈ FI(S) such that Im μ = {1, t} where t ∈ [0, 1) then
(PR(μ))0 = PR(μ0).

Proof. Let x ∈ (PR(μ))0. Then (PR(μ))(x) = (PR(μ))(0) = 1. So for θ ∈ μ,
θ(x) = 1. Thus x ∈ θ0 for every θ ∈ μ. Let P be a prime ideal of S such that
μ0 ⊆ P . Now let us define a fuzzy subset σ of S defined by

σ(x) =
{

1 if x ∈ P
s if x /∈ P

where s ∈ [0, 1), s > t. Then σ is a fuzzy prime ideal of S (cf. Theorem 3.4[11])
such that μ ⊆ σ. Hence x ∈ σ0 = P . Thus x ∈ ∩{P : P is a prime ideal of S
and μ0 ⊆ P }. i.e., x ∈ PR(μ0). Thus we have (PR(μ))0 ⊆ PR(μ0). Again by
Lemma 3.4, PR(μ0) ⊆ (PR(μ))0. Hence (PR(μ))0 = PR(μ0). �

Theorem 3.12. Let μ be a fuzzy primary ideal of S. Then (i) μ(0) = 1,
(ii) | μ(S) |= 2 and (iii) μ0 is a primary ideal of S.

Proof. (i) Let μ(0) = s < 1 and min
i

μ(ei) = r where
n∑

i=1

[δi, ei] is the right

unity of S. Then by Proposition 3.10 there exists e ∈ {ei : i = 1, 2, ......, n} such
that (PR(μ))(e) = t < μ(0) = s. Let s < q ≤ 1. Again r = min

i
μ(ei) ≤ μ(e) ≤
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(PR(μ))(e) = t (cf. Proposition 2.5). So we have r ≤ t < s < q ≤ 1. Let σ, θ
be two fuzzy subsets of S defined by σ(x) = s for all x ∈ S and

θ(x) =
{

q if x ∈ μ0

r if x /∈ μ0

Then σ, θ are fuzzy subsets of S. Let x ∈ S. If x ∈ μ0. Then μ(x) = s and

(θΓσ)(x) =

{
sup

x=uγv
[min[θ(u), σ(v)] : u, v ∈ S; γ ∈ Γ] = s

0 otherwise

Therefore, (θΓσ)(x) ≤ s = μ(x). Now if x /∈ μ0 then θ(x) = r. In that case,
(θΓσ)(x) = r = min

i
μ(ei) ≤ μ(x). So θΓσ ⊆ μ. Now θ(0) = q > s = μ(0)

which implies that θ �⊆ μ. Again for some e ∈ {ei : i = 1, 2, ......, n}, σ(e) = s
> t = (PR(μ))(e). This implies that σ �⊆ PR(μ). Thus θ �⊆ μ and σ �⊆ PR(μ)
but θΓσ ⊆ μ, which is a contradiction to the assumption that μ is a fuzzy
primary ideal of S. Hence μ(0) = 1.

(ii) Since μ is not constant, | μ(S) |≥ 2. Let us suppose that | μ(S) |≥ 3. Let
min

i
μ(ei) = r. Then there exists s ∈ μ(S) such that r < s < 1 as μ(ei) ≤ μ(x)

for all x ∈ S and for all i = 1, 2, ......, n. Let t ∈ S be such that μ(t) = s. Then
there exists e ∈ {ei : i = 1, 2, ......, n} such that (PR(μ))(e) < μ(t). Let σ, θ be
two fuzzy ideals of S defined by σ(x) = s for all x ∈ S and

θ(x) =
{

1 if x ∈ μs

r if x /∈ μs

Then σ, θ are fuzzy subsets of S and θΓσ ⊆ μ. Now θ(t) = 1 > s = μ(t). Thus
θ �⊆ μ. Also σ(e) = s = μ(t) > (PR(μ))(e). Hence σ �⊆ PR(μ). Thus θ �⊆ μ
and σ �⊆ PR(μ) but θΓσ ⊆ μ, which is a contradiction. Hence | μ(S) |= 2.
(iii) Let A and B be two ideals of S such that AΓB ⊆ μ0. Let σ = λA and
θ = λB . Then σΓθ ⊆ μ implies that either σ ⊆ μ or θ ⊆ PR(μ). If σ ⊆ μ then
A ⊆ μ0. If θ ⊆ PR(μ) then B ⊆ (PR(μ))0 ⊆ PR(μ0) by Proposition 3.11.
Hence μ0 is a primary ideal of S. �

Corollary 3.13. Let I be an ideal of S such that λI is a fuzzy primary ideal
of S. Then I is a primary ideal of S.

Proof. Since λI is a fuzzy primary ideal of S, I = (λI)0 is a primary ideal of
S. �

Combining Theorem 3.7 and Theorem 3.12 we have the following Theorem.

Theorem 3.14. Let μ be a fuzzy ideal of S. Then μ is a fuzzy primary ideal
of S if and only if (i) μ(0) = 1, (ii) | μ(S) |= 2 and (iii) μ0 is a primary ideal
of S.
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4 Fuzzy nil radical of Γ−semiring

Throughout this section we assume that S is a commutative Γ−semiring.

Definition 4.1. Let I be an ideal of a Γ−semiring S. The subset
√

I of S
defined by

√
I = {x ∈ S : x(γx)n−1 ∈ I, for some n ∈ Z+, for all γ ∈ Γ} is

called nil radical of I.

Definition 4.2. Let μ be a fuzzy ideal of a Γ−semiring S. Then the fuzzy
subset

√
μ of S, defined by

√
μ = sup

n∈Z+
inf
γ∈Γ

μ(x(γx)n−1) is said to be the fuzzy

nil radical of μ.

Proposition 4.3. Let I be an ideal of S and λI be its characteristic function.
Then

√
λI = λ√

I .

Proof. Let I be an ideal of S and λI be its characteristic function. Let
x ∈ S. If x ∈ √

I then x(γx)n−1 ∈ I, for some n ∈ Z+, for all γ ∈ Γ. Then
λI (x(γx)n−1) = 1, for some n ∈ Z+, for all γ ∈ Γ. Thus inf

γ∈Γ
λI(x(γx)n−1) = 1

for some n ∈ Z+ and so sup
n∈Z+

inf
γ∈Γ

λI(x(γx)n−1) = 1 = λ√
I(x). Thus

√
λI(x) =

λ√
I(x) when x ∈ √

I .
Now if x /∈ √

I then for some γ ∈ Γ, x(γx)n−1 /∈ I for all n ∈ Z+. Therefore
λI (x(γx)n−1) = 0 for some γ ∈ Γ and for all n ∈ Z+. Thus inf

γ∈Γ
λI(x(γx)n−1) =

0 for all n ∈ Z+. So
√

λI (x) = sup
n∈Z+

inf
γ∈Γ

λI(x(γx)n−1) = 0 = λ√
I(x). Thus

√
λI(x) = λ√

I(x) for all x ∈ S. Hence
√

λI = λ√
I . �

Proposition 4.4. Let S be a commutative Γ−semiring with identity. If μ is a
fuzzy ideal of S then

√
μ is a fuzzy ideal of S.

Proof. Let x, y ∈ S and γ ∈ Γ. Since S is a commutative Γ−semiring with
identity for m, n ∈ Z+ we have

(x + y)(γ(x + y)m+n−1) = x(γx)m−1(γ
n∑

i=0

(
m + n

i

)
x(γx)n−i−1y(γy)i−1)

+ y(γy)n−1)(γ
m+n∑

i=n+1

(
m + n

i

)
x(γx)m+n−i−1y(γy)i−n−1). Therefore

μ((x+y)(γ(x+y)m+n−1)) ≥ min[μ(x(γx)m−1(γ
n∑

i=0

(
m + n

i

)
x(γx)n−i−1y(γy)i−1)),

μ(y(γy)n−1)(γ
m+n∑

i=n+1

(
m + n

i

)
x(γx)m+n−i−1y(γy)i−n−1)]

≥ min[μ(x(γx)m−1), μ(y(γy)n−1)], for all m, n ∈ Z+.
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Now
√

μ(x + y) = sup
k∈Z+

inf
γ∈Γ

μ[(x + y)(γ(x + y))k−1] ≥ sup
m,n∈Z+

inf
γ∈Γ

μ[(x +

y)(γ(x + y))m+n−1 ] ≥ sup
m,n∈Z+

inf
γ∈Γ

min[μ(x(γx)m−1), μ(y(γy)n−1)] =

min[ sup
m∈Z+

inf
γ∈Γ

μ(x(γx)m−1), sup
n∈Z+

inf
γ∈Γ

μ(y(γy)n−1)] = min[
√

μ(x),
√

μ(y)]. Again
√

μ(xγy) = sup
n∈Z+

inf
δ∈Γ

μ(xγy)(δ(xγy))n−1 ≥ sup
n∈Z+

inf
δ∈Γ

μ[y(δ(xγy))n−1 ]

≥ sup
n∈Z+

inf
δ∈Γ

μ[y(δy)n−1 ] (since S is commutative) =
√

μ(y). Similarly
√

μ(xγy) ≥
√

μ(x). Hence
√

μ is a fuzzy ideal of S. �

Proposition 4.5. Let μ, θ ∈ FI(S). Then the following are hold:
(i) μ ⊆ √

μ,
(ii) μ ⊆ θ implies that √μ ⊆ √

θ,
(iii)

√√
μ =

√
μ,

(iv) √
μt ⊆ (√μ)t,

(v)
√

μ ∩√
θ =

√
μ ∩ θ =

√
μ ◦ θ,

(vi)
√

μ ⊕ θ =
√√

μ ⊕√
θ, provided μ(0) = θ(0) = 1,

(vii)
√

μ0 = (
√

μ)0.

Proof. (i) μ(x(γx)n−1) ≥ μ(x) for all n ∈ Z+ and for all γ ∈ Γ. Thus
inf
γ∈Γ

μ(x(γx)n−1) ≥ μ(x) for all n ∈ Z+, implies that

sup
n∈Z+

inf
γ∈Γ

μ(x(γx)n−1) ≥ μ(x). i.e.,
√

μ(x) ≥ μ(x) for all x ∈ S. So, μ ⊆ √
μ.

(ii)
√

μ(x) = sup
n∈Z+

inf
γ∈Γ

μ(x(γx)n−1) ≤ sup
n∈Z+

inf
γ∈Γ

θ(x(γx)n−1) =
√

θ(x) for all

x ∈ S. Thus √
μ ⊆ √

θ.

(iii)
√√

μ(x) = sup
n∈Z+

inf
γ∈Γ

√
μ(x(γx)n−1) = sup

n∈Z+
inf
γ∈Γ

[ sup
m∈Z+

inf
δ∈Γ

μ(y(δy)m−1)]

where y = x(γx)n−1. i.e.,
√√

μ(x) = sup
n∈Z+

sup
m∈Z+

inf
γ∈Γ

inf
δ∈Γ

μ(y(δy)m−1)

≤ sup
p∈Z+

inf
β∈Γ

μ(x(βx)p−1) =
√

μ(x). Therefore
√√

μ ⊆ √
μ. Again using (i) and

(ii) we have
√

μ ⊆ √√
μ and hence

√√
μ =

√
μ.

(iv) Let x ∈ √
μt. Then x(γx)n−1 ∈ μt for some n ∈ Z+ and for all γ ∈

Γ. Thus μ(x(γx)n−1) ≥ t for some n ∈ Z+ and for all γ ∈ Γ. Therefore
inf
γ∈Γ

μ(x(γx)n−1) ≥ t for some n ∈ Z+ and so sup
n∈Z+

inf
γ∈Γ

μ(x(γx)n−1) ≥ t

implies that
√

μ(x) ≥ t and consequently, x ∈ (
√

μ)t. Hence
√

μt ⊆ (
√

μ)t.

(v) We have μ ◦ θ ⊆ μ∩ θ ⊆ μ, θ. Thus from (ii),
√

μ ◦ θ ⊆ √
μ ∩ θ ⊆ √

μ,
√

θ.



148 Fuzzy Radicals of Γ−semirings

Therefore
√

μ ∩ θ ⊆ √
μ ∩√

θ. Thus√
μ ◦ θ ⊆

√
μ ∩ θ ⊆ √

μ ∩
√

θ (1)

Again for x ∈ S,
√

μ ◦ θ(x) = sup
n∈Z+

inf
γ∈Γ

(μ ◦ θ)(x(γx)n−1) =

= sup
n∈Z+

inf
γ∈Γ

[sup[ inf
1≤i≤p

[min[μ(ui), θ(vi)]] : x(γx)n−1 =
p∑

i=1

uiδivi, ui, vi ∈ S, γ ∈

Γ]] ≥ sup
s,t∈Z+

inf
γ∈Γ

min[μ(x(γx)s−1), θ(x(γx)t−1)] = min[ sup
s∈Z+

inf
γ∈Γ

μ(x(γx)s−1),

sup
t∈Z+

inf
γ∈Γ

θ(x(γx)t−1)] = min[
√

μ(x),
√

θ(x)] = (
√

μ ∩
√

θ)(x). Thus

√
μ ◦ θ ⊇ (

√
μ ∩

√
θ) (2)

Combining (1) and (2) we get the result.

(vi) Since μ, θ ⊆ μ⊕ θ as μ(0) = θ(0) = 1, it follows that
√

μ,
√

θ ⊆ √
μ ⊕ θ [by

(ii)]. Thus
√

μ ⊕ √
θ ⊆ √

μ ⊕ θ ⊕ √
μ ⊕ θ =

√
μ ⊕ θ. Therefore, by using (iii)

we get √√
μ ⊕

√
θ ⊆

√√
μ ⊕ θ =

√
μ ⊕ θ (A)

Again μ ⊆ √
μ and θ ⊆ √

θ. Therefore, by using (ii), μ ⊕ θ ⊆ √
μ ⊕√

θ. i.e.,

√
μ ⊕ θ ⊆

√√
μ ⊕

√
θ (B)

Combining (A) and (B) we have,
√

μ ⊕ θ =
√√

μ ⊕√
θ.

(vii) For any x ∈ S, x ∈ √
μ0 ⇔ x(γx)n−1 ∈ μ0 for some n ∈ Z+, for all γ ∈ Γ

⇔ μ(x(γx)n−1) = μ(0) for some n ∈ Z+, for all γ ∈ Γ ⇔ sup
n∈Z+

inf
γ∈Γ

μ(x(γx)n−1) =

μ(0) =
√

μ(0) ⇔ √
μ(x) = μ(0) =

√
μ(0) ⇔ x ∈ (

√
μ)0. Hence

√
μ0 = (

√
μ)0.�

Proposition 4.6. Let t ∈ [0, 1) and μ be a fuzzy ideal of S. Then (
√

μ)[t] =√
μ[t].

Proof. For x ∈ √
μ[t] ⇔ x(γx)n−1 ∈ μ[t] for some n ∈ Z+, for all γ ∈ Γ ⇔

μ(x(γx)n−1) > t for some n ∈ Z+, for all γ ∈ Γ ⇔ inf
γ∈Γ

μ(x(γx)n−1) > t for

some n ∈ Z+ ⇔ sup
n∈Z+

inf
γ∈Γ

μ(x(γx)n−1) > t ⇔ √
μ(x) > t ⇔ x ∈ (

√
μ)[t]. Hence

(
√

μ)[t] = √
μ[t]. �

Proposition 4.7. Let μ be a non constant fuzzy ideal of S. Then √
μ is a fuzzy

semiprime ideal of S.
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Proof. Let x ∈ S. Now inf
γ∈Γ

√
μ(xγx) = inf

γ∈Γ
sup

n∈Z+
inf
δ∈Γ

μ((xγx)(δ(xγx))n−1)

= sup
n∈Z+

inf
γ∈Γ

μ((xγx)(γ(xγx))n−1) = sup
n∈Z+

inf
γ∈Γ

μ(x(γx)2n−1) ≤ sup
m∈Z+

μ(x(γx)m−1)

=
√

μ(x). Thus inf
γ∈Γ

√
μ(xγx) ≤ √

μ(x). Again
√

μ(xγx) ≥ √
μ(x) and so

inf
γ∈Γ

√
μ(xγx) ≥ √

μ(x). Hence inf
γ∈Γ

√
μ(xγx) =

√
μ(x) and hence √

μ is com-

pletely semiprime ideal of S and since S is commutative, we have √
μ is fuzzy

semiprime ideal of S. �

Proposition 4.8. If μ is a fuzzy prime ideal of S then
√

μ = μ.

Proof. Let x ∈ S. Since μ is a fuzzy prime ideal, it is fuzzy semiprime and
so μ(xγx) = μ(x). Now μ(x(γx)2) = μ(xγ(xγx)) = max[μ(x), μ(xγx)] = μ(x)
as S is commutative (cf. Proposition 3.8[11]). In general we can show that
μ(x(γx)n) = μ(x). Now

√
μ(x) = sup

n∈Z+
inf
γ∈Γ

μ(x(γx)n−1) = sup
n∈Z+

inf
γ∈Γ

μ(x) =

μ(x). �

Proposition 4.9. Let μ be a fuzzy ideal of S. Then
√

μ = PR(μ).

Proof. Let θ be a fuzzy prime ideal of S such that μ ⊆ θ. Then by Proposition
4.5,

√
μ ⊆ √

θ = θ. Thus
√

μ ⊆ ∩{θ : θ ∈ FPI(S) | μ ⊆ θ}
= PR(μ). So

√
μ ⊆ PR(μ).

If possible let
√

μ �= PR(μ), then there exists an element s ∈ S such that√
μ(s) < (PR(μ))(s). Let

√
μ(s) = t. Then s /∈ (

√
μ)[t]. i.e., s /∈ √

μ[t] by
Proposition 4.6. Then there exists a prime ideal P of S such that μ[t] ⊆ P and
s /∈ P (cf. Theorem 3.14[7]). Let us define a fuzzy subset φ of S as follows

φ(x) =
{

1 if x ∈ P
t if x /∈ P, 0 ≤ t < 1

Then φ is a fuzzy prime ideal of S(cf. Theorem 3.4[11]). Now if x ∈ P then
φ(x) = 1. So μ(x) ≤ φ(x). If x /∈ P then x /∈ μ[t]. i.e., μ(x) ≤ t = φ(x). Thus
μ(x) ≤ φ(x) for all x ∈ S and so μ ⊆ φ. Now

√
μ(s) < (PR(μ))(s) ≤ φ(s)

= t = √
μ(s), a contradiction. Hence √

μ = PR(μ). �
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