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Abstract

The paper presents a subclass of the class of MD5-algebras and MD5-
groups, i.e. five dimensional solvable Lie algebras and Lie groups such
that their orbits in the co-adjoint representation (K-orbits) are orbits of
zero or maximal dimension. The main result of the paper is the classifica-
tion up to an isomorphism of all MD5-algebras having non-commutative
derived ideals.

Introduction

In 1962, studying theory of representations, A. A. Kirillov introduced the Orbit
Method (see [2]). This method quickly became the most important method in
the theory of representations of Lie groups. Using the Kirillov’s Orbit Method,
we can obtain all the unitary irreducible representations of solvable and simply
connected Lie Groups. The importance of Kirillov’s Orbit Method is the co-
adjoint representation (K-representation). Therefore, it is meaningful to study
the K-representation in the theory of representations of Lie groups.

After studying the Kirillov’s Orbit Method, Do Ngoc Diep in 1980 sug-
gested to consider the class of Lie groups and Lie Algebras MD such that
the C∗ − algebras of them can be described by using KK-functors (see [1]).
Let G be an n-dimensional real Lie group. G is called an MDn-group if and
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only if its orbits in the K-representation (i.e. K-orbits) are orbits of dimen-
sion zero or maximal dimension. The corresponding Lie algebra of G is called
an MDn-algebra. Thus, classification and studying of K-representation of the
class of MDn-groups and MDn-algebras are the problem of interest. Because
all Lie algebras of n dimension (with n ≤ 3) were listed easily, we have to con-
sider MDn-groups and MDn-algebras with n ≥ 4. In 1990, all MD4-algebras
were classified up to an isomorphism by Vu - the first author (see [5]). Re-
cently, Vu and some his colleagues have continued studying MD5-groups and
MD5-algebras having commutative derived ideals (see [6], [7], [8]). In 2008, a
classification of all MD5-algebras having commutative derived ideals was given
by Vu and Kar Ping Shum (see [9]).

In this paper, we shall give the classification up to an isomorphism of all
MD5-algebras G whose derived ideals G1 := [G, G] are non-commutative. This
classification is the main result of the paper.

The paper is organized as follows: The first section deals with some prelim-
inary notions, section 2 is devoted to the discussion of some results on MDn-
algebras, in particular, the main result of the paper is given in this section.

1 Preliminaries

We first recall in this section some preliminary results and notations which will
be used later. For details we refer the reader to the book [2] of A. A. Kirillov
and the book [1] of Do Ngoc Diep.

1.1 The K-representation and K-orbits

Let G be a Lie group, G =Lie(G) be the corresponding Lie algebra of G and G∗

be the dual space of G. For every g ∈ G, we denote the internal automorphism
associated with g by A(g), and whence, A(g) : G → G can be defined as follows
A(g) := g.x.g−1, ∀x ∈ G. This automorphism induces the following map A(g)∗ :
G → G which is defined as follows

A(g)∗ (X) := d
dt

[
g. exp (tX) .g−1

] |t=0 , ∀X ∈ G.

This map is called the tangent map of A(g). We now formulate the defini-
tions of K-representation and K-orbit.

Definition 1.1.1. The action

K : G −→ Aut(G∗)
g �−→ K(g)

such that 〈
K(g)(F ), X

〉
:=
〈
F, A(g−1)∗ (X)

〉
, ∀F ∈ G∗, ∀X ∈ G
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is called the co-adjoint representation or K-representation of G in G∗.

Definition 1.1.2. Each orbit in the co-adjoint representation of G is called a
K-orbit of G.

We denote the K-orbit containing F by ΩF . Thus, for every F ∈ G∗, we
have ΩF := {K (g) (F )|g ∈ G}. The dimension of every K-orbit of an arbitrary
Lie group G is always even. In order to define the dimension of the K-orbits
ΩF for each F from the dual space G∗ of the Lie algebra G = Lie(G), it is useful
to consider the following skew-symmetric bilinear form BF on G: BF (X, Y ) =
〈F, [X, Y ]〉 , ∀X, Y ∈ G. We denote the stabilizer of F under the co-adjoint
representation of G in G∗ by GF and GF := Lie(GF ).

We shall need in the sequel of the following result.

Proposition 1.1.3 (see [2, Section 15.1]). KerBF = GF and dimΩF =
dimG − dimGF = rankBF . �

1.2 MD-groups and MD-algebras

Definition 1.2.1 (see [1, Chapter 2]). An MD-group is a real solvable Lie
group of finite dimension such that its K-orbits are orbits of dimension zero
or maximal dimension (i.e. dimension k, where k is some even constant and
no more than the dimension of the considered group). When the dimension of
considered group is n (n is a some positive integer), the group is called an MDn-
group. The Lie algebra of an MD-group (MDn-group, respectively) is called an
MD-algebra (MDn-algebra, respectively).

The following proposition gives a necessary condition for a Lie algebra be-
longing to the class of MD-algebras.

Proposition 1.2.2 (see [3, Theorem 4]). Let G be an MD-algebra. Then
its second derived ideal G2 := [[G, G], [G, G]] is commutative. �

We point out here that the converse of the above result is in general not true.
In other words, the above necessary condition is not a sufficient condition. So,
we now only consider the real solvable Lie algebras having commutative second
derived ideals. Thus, they could be MD-algebras.

Proposition 1.2.3 (see [1, Chapter 2, Proposition 2.1]). Let G be an
MD-algebra with F (in G∗) is not perfectly vanishing in G1 := [G, G], i.e. there
exists U ∈ G1 such that 〈F, U〉 
= 0. Then the K-orbit ΩF is one of the K-orbits
having maximal dimension. �
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2 THE CLASS OF MD5-ALGEBRAS

HAVING NON-COMMUTATIVE

DERIVED IDEALS

2.1 Some Results on the Class of MD-algebras

In this subsection, we shall present some results on general MDn-algebras (n ≥
4).

Firstly, we consider a real solvable Lie algebra G of dimension n such that
dimG1 = n − k (k is some integer constant, 1 ≤ k < n), G2 is non - trivial
commutative and dimG2 = dimG1 − 1 = n − k − 1. Without loss of generality,
we may assume that

G = gen (X1, X2, ..., Xn) , (n ≥ 4),
G1 = gen (Xk+1, Xk+2, ..., Xn) , (n > k ≥ 1),
G2 = gen (Xk+2, ..., Xn) ,

with the Lie brackets are given by

[Xi, Xj ] =
n∑

l=k+1

C l
ijXl, 1 ≤ i < j ≤ n,

where C l
ij (1 ≤ i < j ≤ n, k + 1 ≤ l ≤ n) are constructional constants of G.

Theorem 2.1.1. There is no MD-algebra G such that its second derived ideal
G2 is not trivial and less than its first derived ideal G1 by one dimension:
dimG2 = dimG1 − 1.

In order to prove this theorem, we need some lemmas.

Lemma 2.1.2. The operator adXk+1 restricted on G2 is an automorphism.

Proof. Since G2 is commutative, [Xi, Xj ] = 0, ∀i, j ≥ k + 2. Hence,

gen (Xk+2, Xk+3, · · · , Xn) = G2 =
[G1, G1

]
= gen ([Xk+1, Xk+2] , [Xk+1, Xk+3] , · · · , [Xk+1, Xn])
= gen

(
adXk+1 (Xk+2) , · · · , adXk+1 (Xn)

)
.

It follows that adXk+1 restricted on G2 is automorphic. �

Lemma 2.1.3. Without any restriction of generality, we can always suppose
right from the start that [Xi, Xk+1] = 0 for all indices i such that 1 ≤ i ≤ k.

Proof. Firstly, we remark that [X1, Xk+1] ∈ G1, so there exists X ∈ G2 such
that [X1, Xk+1] = Ck+1

1,k+1Xk+1 +X. Since adXk+1 restricted on G2 is automor-
phic, there exists Y ∈ G2 such that adXk+1 (Y ) = X.
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By changing X′
1 = X1 + Y , we get [X′

1, Xk+1] = Ck+1
1,k+1Xk+1. Using the

Jacobi identity for X′
1, Xk+1, and an arbitrary element Z ∈ G2 we obtain

adX′
1
◦ adXk+1 − adXk+1 ◦ adX′

1
= αadXk+1 , where α is some real constant.

Since adXk+1 is automorphic on G2, α must be zero. Therefore, Ck+1
1,k+1 = 0,

i.e. [X′
1, Xk+1] = 0. So, we can suppose that [X1, Xk+1] = 0.

By the same way, we can suppose [X2, Xk+1] = · · · = [Xk, Xk+1] = 0. �

Lemma 2.1.4. [Xi, Xj] = Ck+1
ij Xk+1 for all pairs of indices i, j such that

1 ≤ i < j ≤ k.

Proof. Consider an arbitrary pair of indices i, j such that 1 ≤ i < j ≤ k. Note

that [Xi, Xj] =
n∑

l=k+1

C l
ijXl = Ck+1

ij Xk+1 +
n∑

l=k+2

C l
ijXl. By using the Jacobi

identity, we have

[Xi, [Xj , Xk+1]] + [Xj , [Xk+1, Xi]] + [Xk+1, [Xi, Xj ]] = 0

⇒ [Xk+1, [Xi, Xj]] =

[
Xk+1, Ck+1

ij Xk+1 +
n∑

l=k+2

C l
ijXl

]
= 0

⇒ adXk+1

(
n∑

l=k+2

C l
ijXl

)
= 0

⇒
n∑

l=k+2

C l
ijXl = 0 (because adXk+1 is automorphic on G2)

⇒ [Xi, Xj ] = Ck+1
ij Xk+1; 1 ≤ i < j ≤ k.

�

We now prove Theorem 2.1.1. Namely, we will prove that if G is a real
solvable Lie algebra such that G2 is non - trivial commutative and dimG2 =
dimG1 − 1 = n − k − 1, 1 ≤ k < n, then G is not an MD-algebra.

Proof of Theorem 2.1.1.

According to above lemmas, we can choose a suitable basis (X1, X2, · · · , Xn)
of G which satisfies the following conditions:

[Xi, Xj] = Ck+1
ij Xk+1, 1 ≤ i < j ≤ k;

[Xi, Xk+1] = 0, 1 ≤ i ≤ k;

[Xi, Xj] =
n∑

l=k+2

C l
ijXl, 1 ≤ i ≤ k + 1, k + 2 ≤ j ≤ n.

Moreover, the constructional constants Ck+1
ij can not concomitantly vanish

and the matrix A =
(
C l

j,k+1

)
k+2≤j,l≤n

is invertible because adXk+1 restricted

on G2 is automorphic.
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Since A is invertible, there exist αk+2, · · · , αn ∈ R, which are not concomi-
tantly vanishing, such that

A

⎡
⎢⎣

αk+2

...
αn

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ ∈ R

n−k−1.

Let (X∗
1 , X∗

2 , · · · , X∗
n) is the dual basis in G∗ of (X1, X2, · · · , Xn). We choose

F1 = X∗
k+1 and F2 = X∗

k+1 + αk+2X
∗
k+2 + · · · + αnX∗

n in G∗ . It can easily
be seen that F1, F2 are not perfectly vanishing in G1. In view of Proposition
1.2.3, if G is an MD-algebra then ΩF1 , ΩF2 are orbits of maximal dimension, in
particular we have

rankBF2 = dimΩF1 = dimΩF2 = rankBF2 .

But it is easy to verify that rankBF2 ≥ rankBF1 + 2. This contradiction
proves that G is not an MD-algebra and the proof of Theorem 2.1.1 is therefore
complete. �

Now we consider an arbitrary real solvable Lie algebra G of dimension
n (n ≥ 5) such that dimG1 = n − 1. It is obvious that we can choose
one basis (X1, X2, · · · , Xn) of G such that G1 = gen (X2, X3, · · · , Xn), G2 ⊂
gen (X3, · · · , Xn) and G2 is commutative. Let C l

ij (1 ≤ i < j ≤ n, 2 ≤ l ≤ n) be
constructional constants of G. Then the Lie brackets are given by the following
formulas

[Xi, Xj ] =
n∑

l=2

C l
ijXl (1 ≤ i < j ≤ n) .

Theorem 2.1.5. Let G be a real solvable Lie algebra of dimension n such
that its first derived ideal G1 is (n − 1)-dimensional (n ≥ 5) and its second
derived ideal G2 is commutative. Then G is MDn-algebra if and only if G1 is
commutative.

In order to prove this theorem, once again, we also need some lemmas.

Lemma 2.1.6. If G is an MD-algebra of dimension n (n ≥ 5) such that
dimG1 = n − 1 then dimΩF ∈ {0, 2} for every F ∈ G∗.

Proof. Let adX1 = (aij)n−1 ∈ End
(G1
)
. With F0 = X∗

2 ∈ G∗, the matrix of
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the bilinear form BF0 in the chosen basis is given as follows

BF0 =

⎡
⎢⎢⎢⎢⎣

0 −a12 −a13 . . . −a1n

a12 0 0 . . . 0
a13 0 0 . . . 0
. . . . . . . . . . . .
a1n 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦ .

It is plain that rank BF0 = 2. Since G is an MD-algebra, we get dimΩF ∈ {0, 2}
for every F ∈ G∗. �

Lemma 2.1.7. Suppose that G = gen (X1, X2, · · · , Xn) is a real solvable Lie
algebra of dimension n such that

G1 = gen (X2, X3, · · · , Xn) and G2 = gen (Xk+1, · · · , Xn), k > 1.
Let

A =

⎛
⎜⎝

C2
12 . . . C2

1k
...

. . .
...

Ck
12 · · · Ck

1k

⎞
⎟⎠

be the matrix established by the constructional constants C l
1j (2 ≤ j, l ≤ k) of

G. Then A is invertible.

Proof. Since G1 = [G, G], there exist real numbers αij, 1 ≤ i < j ≤ n, such that

X2 =
∑

1≤i<j≤n

αij [Xi, Xj]

=
k∑

j=2

α1j [X1, Xj] +
n∑

j=k+1

α1j [X1, Xj] +
∑

2≤i<j≤n

αij [Xi, Xj]

=
k∑

j=2

α1j [X1, Xj] + LC1

(G2
)

=
k∑

j=2

α1j

(
n∑

l=2

C l
1jXl

)
+ LC1

(G2
)

=
k∑

j=2

α1j

(
k∑

l=2

C l
1jXl +

n∑
l=k+1

C l
1jXl

)
+ LC1

(G2
)

=
k∑

l=2

k∑
j=2

C l
1jα1jXl + LC2

(G2
)
,

where LC1

(G2
)
, LC2

(G2
)

are linear combinations of some definite vectors
from the chosen basis of G2. This implies that there exists columnar vector
Y2 ∈ R

k−1 such that

AY2 =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ ∈ R

k−1.
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Similarly, there exist columnar vectors Y3, · · · , Yk ∈ R
k−1 such that

AY3 =

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ , · · · , AYk =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

k−1.

Thus, there is a real matrix P such that A.P = I, where I is the identity
(k − 1)-matrix. So A is invertible and Lemma 2.1.7 is proved completely. �

Proof of Theorem 2.1.5

Firstly, we shall prove that, if G = gen (X1, X2, · · · , Xn) (n ≥ 5) such that
G1 = gen(X2, X3, · · · , Xn) is non-commutative, then G is not an MD-algebra.

Let G2 = gen (Xk+1, · · · , Xn) , 2 ≤ k < n. We need to consider some cases
which contradict each other as follows.

1. k = 2. Then, dimG2 = dimG1−1. According to Theorem 2.1.1, G is not
an MD-algebra.

2. k = 3. That means that G2 = gen (X4, · · · , Xn). Assume that G
is an MD-algebra. Remember that [X1, X2] =

n∑
l=2

C l
12Xl, [X1, X3] =

n∑
l=2

C l
13Xl, [Xi, Xj] =

n∑
l=4

C l
ijXl, for all j > 4 when i = 1, j ≥ 3 when

i = 2 and j > 3 when i = 3. According to Lemma 2.1.7, the matrix

P =
[
C2

12 C3
12

C2
13 C3

13

]
is invertible.

Let F = α1X
∗
1 +α2X

∗
2 + · · ·+αnX∗

n be an arbitrary element of G∗, where
α1, α2, · · · , αn ∈ R. The matrix of the bilinear form BF is

BF =

⎡
⎢⎢⎣

0 −F ([X1, X2]) · · · −F ([X1, Xn])
F ([X1, X2]) 0 · · · −F ([X2, Xn])

· · · · · · · · · · · ·
F ([X1, Xn]) F ([X2, Xn]) · · · 0

⎤
⎥⎥⎦ .

Now we consider the 4-submatrices of BF established by the elements
which are on the rows and the columns of the same numbers 1, 2, 3, i
(i > 3). Because G is an MD-algebra, so according to Lemma 2.1.6, we
get rank(BF ) ∈ {0, 2}, this implies that the determinants of these 4-
submatrices are zero for any F ∈ G∗. By direct computations, using the
following obvious result of Linear Algebra: the determinant of any skew-
symmetric real 4-matrix (aij)4 is equal to zero if and only if a12.a34 −
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a13.a24+a14.a23 = 0, we get C l
2i = C l

3i = 0, l ≥ 4. This implies [X2, Xi] =
[X3, Xi] = 0, i ≥ 4. Note that G2 is commutative. So we have

G2 =
[G1, G1

]
= gen (X4, · · · , Xn)
= gen ([Xi, Xj] ; i, j ≥ 2)
= gen ([X2, X3]) .

Thus, n − 3 = dimG2 ≤ 1, i.e. n ≤ 4. This contradicts the hypothesis
n ≥ 5. That means G is not an MD-algebra.

3. k ≥ 4. By an argument analogous to that used above, we also prove that
G is not an MD-algebra.

Conversely, assume that G is a real solvable Lie algebra of dimension n
such that its first derived ideal is (n − 1)-dimensional and commutative, i.e.
G1 ≡ R.X2 ⊕ R.X3 ⊕ ... ⊕ R.Xn ≡ R

n−1. We need to show that G is an
MD-algebra.

Let F = α1X
∗
1 +α2X

∗
2 +· · ·+αnX∗

n ≡ (α1, α2, · · · , αn) ∈ R
n be an arbitrary

element from G∗ ≡ R
n, where α1, α2, · · · , αn ∈ R. By simple computation, we

can see that the matrix of the bilinear form BF is

BF =

⎡
⎢⎢⎣

0 −F ([X1, X2]) · · · −F ([X1, Xn])
F ([X1, X2]) 0 · · · 0

· · · · · · · · · · · ·
F ([X1, Xn]) 0 · · · 0

⎤
⎥⎥⎦ .

It is clear that rankBF ∈ {0, 2}. Hence, G is an MDn-algebra and Theorem
2.1.5 is proved completely. �

2.2 Classification of MD5-algebras having non-commutative
derived ideals

The following theorem is the main result of the paper. It gives the classification
up to an isomorphism of MD5-algebras having non-commutative derived ideals.

Theorem 2.2.1. Let G be an MD5-algebra such that the first derived ideal
G1 = [G, G] is non-commutative. Then the following assertions hold.

(i) If G is decomposable, then G ∼= H⊕K, where H and K are MD-algebras
of dimensions which are no more than 4.

(ii) If G is indecomposable, then we can choose a suitable basis (X1, X2, X3, X4,
X5) of G such that G1 = gen(X3, X4, X5), [X3, X4] = X5; operators
adX1 , adX2 act on G1 as the following endomorphisms

adX1 =

⎛
⎝1 0 0

0 1 0
0 0 2

⎞
⎠ , adX2 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠



L. A. Vu, H. V. Hieu and T. T. Hieu Nghia 127

and the other Lie brackets are trivial.

We need to prove some lemmas before we prove Theorem 2.2.1.

Lemma 2.2.2. Let G be a real solvable Lie algebra. For any Z ∈ G we consider
adZ as an operator acting on G1. Then we have Trace (adZ) = 0 for all Z ∈ G1.

Proof. Using the Jacobi identity for X, Y ∈ G and an arbitrary element Z ∈ G1,
we have [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0. So, adX ◦ adY − adY ◦ adX =
ad[X,Y ]. This implies Trace

(
ad[X,Y ]

)
= 0. Note that G1 = [G, G] and adZ is a

linear map. So we get Trace (adZ) = 0 for all Z ∈ G1. �

Lemma 2.2.3. If G is a real solvable Lie algebra with dimG1 = 2 then G1 is
commutative.

Proof. We choose a basis (X, Y ) of G1. Assume that [X, Y ] = aX + bY . So

we have adX =
(

0 a
0 b

)
, adY =

(−a 0
−b 0

)
∈ End(G1). According to Lemma

2.2.2, we get a = b = 0. Hence, G1 is commutative. �

Now we are ready to prove Theorem 2.2.1 - The main result of the paper.

Proof of Theorem 2..2.1

It is clear that assertion (i) of Theorem 2.2.1 holds obviously. We only need to
prove assertion (ii). Let G be an indecomposable MD5-algebra such that the
first derived ideal G1 = [G, G] is non - commutative and the second derived ideal
G2 =

[G1, G1
]

is commutative. According to Theorems 2.1.1, 2.1.5 and Lemma
2.2.3, the dimensions of G1 and G2 =

[G1, G1
]

must be 3 and 1, respectively.
We choose a basis (X1, X2, X3, X4, X5) such that G1 = gen (X3, X4, X5) and
G2 = gen (X5) with the Lie brackets are given by

[X1, X2] = a3X3 + a4X4 + a5X5,
[X1, X3] = b3X3 + b4X4 + b5X5,
[X1, X4] = c3X3 + c4X4 + c5X5,
[X1, X5] = d3X3 + d4X4 + d5X5,
[X2, X3] = e3X3 + e4X4 + e5X5,
[X2, X4] = f3X3 + f4X4 + f5X5,
[X2, X5] = k3X3 + k4X4 + k5X5,
[X3, X4] = g5X5, [X3, X5] = h5X5, [X4, X5] = l5X5,

where ai, bi, ci, di, ei, fi, ki (i = 3, 4, 5) and g5, h5, l5 are the definite real num-
bers.

Now we give some useful remarks as follows.

a. According to Lemma 2.2.2, Trace (adX3) = Trace (adX4) = 0. That
means h5 = l5 = 0.



128 Classification of 5-dimesional MD-algebras....

b. g5 
= 0 because G2 = gen(X5). By changing X3 with X′
3 = 1

g5
X3, we get

[X′
3, X4] = X5. So, we can suppose right from the start that [X3, X4] =

X5, i.e. g5 = 1.

c. d3 = d4 = k3 = k4 = 0 because G2 = R.X5 is an ideal of G. So, we get

[X1, X5] = d5X5 , [X2, X5] = k5X5.

If k5 
= 0, by changing X′
2 = X1 − d5

k5
X2 we get [X′

2, X5] = 0. So, we can
always assume that k5 = 0.

d. By changing X1 with X′
1 = X1 − c5X3 + b5X4 and X2 with X′

2 =
X2 − f5X3 + e5X4, we get

[X′
1, X3] = b3X3 + b4X4, [X′

1, X4] = c3X3 + c4X4,
[X′

2, X3] = e3X3 + e4X4, [X′
2, X4] = f3X3 + f4X4.

Thus, we can suppose right from the start that b5 = c5 = e5 = f5 = 0.

Using the Jacobi identity for triads X1, X2, Xi (i = 3, 4, 5), we obtain

(I)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a3 = a4 = 0,
e4c3 = b4f3,
e3b4 + e4c4 = b3e4 + b4f4,
f3b3 + f4c3 = c3e3 + c4f3,
b3 + c4 = d5,
e3 + f4 = 0.

So we can reduce the Lie brackets as follows

[X1; X2] = a5X5,
[X1; X3] = b3X3 + b4X4,
[X1; X4] = c3X3 + c4X4,
[X1; X5] = (b3 + c4)X5,
[X2; X3] = e3X3 + e4X4,
[X2; X4] = f3X3 − e3X4,
[X3; X4] = X5.

Thus, Relations (I) can be rewritten as follows

(II)

⎧⎨
⎩

e4c3 = b4f3,
2e3b4 = e4 (b3 − c4) ,
2c3e3 = f3 (b3 − c4) .

Now we need to consider the following cases which contradict each other.

Case 1: e3 = e4 = 0.

(II) ⇔
{

b4f3 = 0,
f3 (b3 − c4) = 0.
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1.1. Assume that f3 = 0. Then, Relations (II) is automatically satisfied.

By choosing F1 = X∗
3 ∈ G∗, we get rankBF1 = 2.

Now we choose F2 = X∗
5 ∈ G∗. By simple computation, we obtain

BF2 =

⎡
⎢⎢⎢⎢⎣

0 −a5 0 0 −(b3 + c4)
a5 0 0 0 0
0 0 0 −1 0
0 0 1 0 0

b3 + c4 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Since G is an MD-algebra, this implies that rankBF2 = rankBF1 = 2.
That fact implies that a5 = b3 + c4 = 0, so G is decomposable, which is
a contradiction. Thus, this case cannot happen.

1.2. Now we assume that f3 
= 0. Then b4 = 0, b3 = c4.
By changing X1 and X2 with X′

1 = X1 − c3X
′
2 and X′

2 = 1
f3

X2 we can
suppose right from the start that f3 = 1, c3 = 0. Because the dimension
of G1 is 3, b3 
= 0. By changing X1 with X′

1 = 1
b3

X1, we can always
assume that b3 = 1. By changing X2 with X′

2 = X2 − a5
2 X5, we can

assume that a5 = 0. Now, we choose F3 = X∗
3 and F4 = X∗

4 from G∗,
we get rankBF3 = 2, rankBF4 = 4. This cannot happen because G is an
MD-algebra.

Case 2: e4 = 0, e3 
= 0

(II) ⇔
⎧⎨
⎩

b4f3 = 0,
b4e3 = 0,
2c3e3 = f3 (b3 − c4) .

⇔
{

b4 = 0,
2c3e3 = f3 (b3 − c4) .

By changing X2 with X′
2 = 1

e3
X2, we can assume that e3 = 1. Now

Relations (II) can be rewritten as follows

(III)
{

b4 = 0,
2c3 = f3 (b3 − c4) .

By changing X4 with X′
4 = X4 − f3

2 X3 and X1 with X′
1 = X1 − b3X2, we

can suppose that b3 = f3 = 0. From Relations (III) we get b4 = c3 = 0.
Let F = αX∗

1 +βX∗
2 +γX∗

3 + δX∗
4 +σX∗

5 ≡ (α, β, γ, δ, σ) be an arbitrary
element from G∗ ≡ R

5; α, β, γ, δ, σ ∈ R. By simple computation, we
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obtain the matrix of the bilinear form BF as follows

BF =

⎡
⎢⎢⎢⎢⎣

0 −a5σ 0 −c4δ −c4σ
a5σ 0 −γ δ 0
0 γ 0 −σ 0

c4δ γ σ 0 0
c4σ 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Since G is an MD-algebra, rankBF only get two values zero or two.
Hence, it is easy to prove that c4 = a5 = 0. But this implies that G is
decomposable. This is a contradiction. Thus, this case cannot happen.

Case 3: e4 
= 0.

By changing X4 with X′
4 = e4X4+e3X3, we can assume that e3 = 0, e4 =

1. Now, Relations (II) can be rewritten as follows{
c3 = b4f3,
b3 = c4.

By changing X1 with X′
1 = X1 − b4X2, we can assume that b4 = 0.

Putting this into the relation above, we get c3 = 0.

Then, the Lie brackets in G can be reduced as follows

[X1, X2] = λX5,
[X1, X3] = μX3,
[X1, X4] = μX4,
[X1, X5] = 2μX5,
[X2, X3] = X4,
[X2, X4] = θX3 ,
[X3, X4] = X5.

Let F = α X∗
1 + βX∗

2 + γX∗
3 + δX∗

4 + σX∗
5 ∈ G∗ be an arbitrary element

from G∗ ≡ R
5. Then by simple computation, we see that

BF =

⎡
⎢⎢⎢⎢⎣

0 −λσ −μγ −μδ −2μσ
λσ 0 −δ −θγ 0
μγ δ 0 −σ 0
μδ θγ σ 0 0
2μσ 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

3.1. Assume μ 
= 0.

When σ 
= 0, we have rankBF = 4. Because G is an MD5-algebra, we
get rankBF ∈ {0, 4} for all α, β, δ, γ, σ ∈ R. But this only can happen if
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θ < 0. By changing X1, X2, X4, X5 with X′
1 = μX1, X

′
2 =

√−θX2, X
′
4 =√−θX4, X

′
5 =

√−θX5, we can assume that θ = −1. By changing X2

with X′
2 = X2− λ

2 X5, we can assume that λ = 0. Hence, the Lie brackets
of G can be reduced as follows

[X1; X3] = X3,
[X1; X4] = X4,
[X1; X5] = 2X5,
[X2; X3] = X4,
[X2; X4] = −X3,
[X3; X4] = X5.

3.2 Assume μ = 0. By the same way, we consider the matrix of the bilinear
form BF and obtain λ = 0. But this shows that G is decomposable. This
construction show that this case cannot happen.

The theorem 2.2.1 is proved completely. So there is only one MD5-algebra
having non-commutative derived ideal. �

CONCLUDING REMARK

Let us recall that each real Lie algebra G defines only one connected and sim-
ply connected Lie group G such that Lie(G) = G. Therefore we obtain only
one connected and simply connected MD5-group corresponding to the MD5-
algebra given in Theorem 2.2.1. In the next paper, we shall describe the ge-
ometry of K-orbits of considered MD5-group, describe topological properties of
MD5-foliation formed by the generic K-orbits of this MD5-group and give the
characterization of the Connes’s C∗-algebra associated to this MD5-foliation.
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