
East-West J. of Mathematics: Vol. 13, No 2(2011) pp. 101-117

ON CHARACTERIZATIONS OF CONVEX

VECTOR FUNSTIONS AND

OPTIMIZATION

Phan Nhat Tinh
Department of Mathematics, Faculty of Sciences,

University of Hue, 77 Nguyen Hue st., Hue, Vietnam.
e-mail: pntinh@yahoo.com

Abstract

In this paper, we present characterizations of convex vector func-
tions via generalized monotonicity of their directional derivatives and
differentials. By applying these results to vector optimization, we have
established some necessary/sufficient conditions for optimality of vector
optimization problems, especially the Kuhn-Tucker condition for con-
strained problems. The results obtained in this paper generalize some
corresponding well-known results of W. Fenchel [8], O.L. Mangasarian
[9] and R.T. Rockafellar [7] in the scalar case.

1 Introduction

Since convex analysis is almost complete then recently people have taken their
attention to generalized convexity. The notion of convex vector functions has
been studied by many authors (see, [2-6, 10]) because this plays an important
role in vector optimization. In this paper, we establish some characterizations
of convex vector functions via generalized monotonicity of their directional
derivatives and their differentials and then we use these results to establish some
necessary/sufficient conditions for optimality of vector optimization problems.
The paper is structured as follows. In the next section, we present some prelim-
inaries concerning concepts of directional derivatives, cone order, convex vector
functions and monotonicity. Section 3 is devoted to studying characterizations
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of convex vector functions via generalized monotonicity of their directional
derivative and differentials. In section 4 we consider the structure of the set of
minimum points of convex vector functions. Especially, necessary and sufficient
conditions of minimum points of vector functions are established. Section 5 es-
tablishes sufficient conditions of Kuhn-Tucker type for vector problems with
constraints. The results obtained in this paper generalize some well-known re-
sults of W. Fenchel [8], O.L. Mangasarian [9] and R.T. Rockafellar [7] in the
scalar case.

2 Preliminaries

Let D ⊂ Rn be a nonempty set and let x ∈ D. We say that a direction v ∈ Rn

is a feasible direction of D at x if there exists t0 > 0 such that x + tv ∈ D, ∀t ∈
[0, t0]. The set of feasible directions of D at x is denoted by TD(x). When D is
convex, it is easy to see that TD(x) is a convex cone. If x ∈ riD then TD(x) is
the subspace of Rn which paralells the affine hull of D. Especially, if x ∈ intD
then TD(x) = Rn.

Let f : D → Rm, x ∈ D, v ∈ TD(x). The directional derivative of f at x
in the direction v, denoted by f ′(x; v), is defined as the following limit (if such
exists)

f ′(x; v) = lim
t↓0

f(x + tv) − f(x)
t

.

Lemma 2.1. Let f be a vector function from a set D ⊂ Rn to Rm. Let x ∈ D

and v ∈ TD(x). Assume that f ′(x; v) exists. Then
i) f ′(x; λv) = λf ′(x; v), ∀λ ≥ 0.

ii) (ξf)′(x; v) = ξf ′(x; v), ∀ξ ∈ L(Rm, R), (where, L(Rm, R) denotes the
space of linear functionals on Rm).

Proof. i) Let λ > 0. We have

lim
t↓0

f(x + tλv) − f(x)
t

= lim
t↓0

λ
f(x + tλv) − f(x)

tλ
= λlim

t↓0
f(x + tλv) − f(x)

tλ
.

Hence, f ′(x; λv) exists and

f ′(x; λv) = λf ′(x; v).

If λ = 0 then the equality is obvious.
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ii) We have,

(ξf)′(x; v) = lim
t↓0

ξf(x + tv) − ξf(x)
t

.

= lim
t↓0

ξ
[f(x + tv) − f(x)

t

]
.

= ξ
[
lim
t↓0

f(x + tv) − f(x)
t

]
.

= ξf ′(x; v).

The proof is complete. �
The following lemma is a basic result of vector analysis which will be needed

in the sequel.

Lemma 2.2. Let f be a vector function from a set D ⊂ Rn with intD �= ∅ to
Rm and let x ∈ intD. If f is differentiable at x then

i) f ′(x; v) = Df(x)(v), ∀v ∈ Rn,
ii) D(ξf)(x) = ξDf(x), ∀ξ ∈ L(Rm, R),

(where, Df(x) denotes the differential of f at x).

Let f : D ⊂ Rn → Rm, x ∈ D, v ∈ TD(x). The generalized directional
derivative of f at x in the direction v (proposed by C. Cusano, M. Fini, D.
Torre in [10]), denoted by f ′

D(x; v), is defined as the following set

f ′
D(x; v) :=

{
l = lim

k→∞
f(x + tkv) − f(x)

tk
, tk ↓ 0

}
.

From definitions we have immediately

Lemma 2.3. If f ′(x; v) exists then f ′
D(x; v) = f ′(x; v).

We recall that a nonempty set C ⊂ Rm is said to be a cone if

tc ∈ C, ∀c ∈ C, t ≥ 0.

Put lC := C ∩ (−C). A cone C is said to be pointed if lC = {0}. The polar
cone of a cone C is defined as the set

C ′ := {ξ ∈ L(Rm, R) : ξ(c) ≥ 0, ∀c ∈ C}.
A cone C ⊂ Rm specifies on Rm an order defined by

x � y ⇔ y − x ∈ C.

When x � y and not y � x then we write x ≺ y. If intC �= ∅ then x � y
means y − x ∈ intC. A nonempty set A ⊂ Rm is said to be lower bounded if
there exist a ∈ Rm such that

a � x, ∀x ∈ A.



104 On Characterizations of Convex Vector Functions and Optimization

The following lemma will be needed in the next section.

Lemma 2.4. Assume that the ordered cone C ⊂ Rm is closed and convex.
Let c ∈ Rm. Then

i) c ∈ C ⇔ ξ(c) ≥ 0, ∀ξ ∈ C ′ \ {0}.
ii) Supposing that intC �= ∅. Then

c ∈ intC ⇔ ξ(c) > 0, ∀ξ ∈ C ′ \ {0}.

Proof. i) ⇒ : It is immediate from the definition of C ′.
⇐ : Suppose to the contrary that, c /∈ C. By the strong separation theorem,
there exists ξ ∈ L(Rm, R) such that

ξ(c) < ξ(x), ∀x ∈ C.

If there exists x0 ∈ C such that ξ(x0) < 0 then ξ(c) < ξ(tx0) = tξ(x0), for every
t > 0. Take t → +∞, we meet a contradiction. Hence, ξ(x) ≥ 0, for all x ∈ C.
Therefore, ξ ∈ C ′ and ξ(c) < ξ(0) = 0 which contradicts the hypothesis. Thus,
c ∈ C.

ii) ⇒ : There exists r > 0 such that B(c, r) ⊂ C. Suppose to the contrary
that there exists ξ ∈ C ′ \ {0} such that ξ(c) = 0. Since ξ(x) ≥ 0 for every
x ∈ B(c, r), it implies ξ(x) = 0, for every x ∈ B(c, r). Hence, ξ = 0 which
contradicts the assumption above.
⇐ : Suppose in the contrary that, c /∈ intC. By the separation theorem, there
exists ξ ∈ L(Rm, R) \ {0} such that

ξ(c) < ξ(x), ∀x ∈ intC.

If there exists x0 ∈ intC such that ξ(x0) < 0 then ξ(c) < ξ(tx0) = tξ(x0), for
every t > 0. Take t → +∞, we meet a contradiction. Hence, ξ(x) ≥ 0, for
every x ∈ intC. Thus, ξ ∈ C ′ \ {0} and ξ(c) ≤ ξ(0) = 0 which contradicts the
hypothesis. The proof is complete. �
Lemma 2.5. Let C ⊂ Rm be a convex cone which is not the whole space. If
intC �= ∅ then {0} ∪ intC is a pointed cone.

Proof. Suppose in the contrary that {0} ∪ intC is not pointed. Then there
exist c ∈ intC ∩ (−intC). Since intC is convex then 0 = 1

2c + 1
2(−c) ∈ intC.

This implies C = Rm which contradicts assumptions. The proof is complete.
�

A vector function f from a nonempty convex set D ⊂ Rn to Rm is said to
be convex with respect to C if for every x, y ∈ D, λ ∈ [0, 1], we have

f(λx + (1 − λ)y) � λf(x) + (1 − λ)f(y),
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i.e.,
λf(x) + (1 − λ)f(y) ∈ f(λx + (1 − λ)y) + C.

Supposing that intC �= ∅. f is said to be strictly convex with respect to C if
for every x, y ∈ D, x �= y, λ ∈ (0, 1), one has

f(λx + (1 − λ)y) � λf(x) + (1 − λ)f(y),

i.e.,
λf(x) + (1 − λ)f(y) ∈ f(λx + (1 − λ)y) + intC.

The lemma below shows the relation between scalar convex functions and vector
convex functions which will be needed in the next section.

Lemma 2.6. ([Lemma 21, 2]) Assume that the ordered cone C ⊂ Rm is closed
and convex. Let f be a vector function from a nonempty and convex set D ⊂ Rn

to Rm. Then,
i) f is convex with respect to C if and only if ξf is convex, for every ξ ∈

C ′ \ {0}.
ii) Supposing that intC �= ∅. f is strictly convex if only if ξf is strictly

convex, for every ξ ∈ C ′ \ {0}.
Lemma 2.7. Assume that the ordered cone C ⊂ Rm is convex. Let D ⊂ Rn

be a nonempty convex set and f : D ⊂ Rn → Rm be a convex vector function
with respect to C. Let x ∈ D and v ∈ TD(x) \ {0}. Then,

i) The function g(t) := f(x+tv)−f(x)
t

, t > 0, is increasing with respect to C
, i.e.,

0 < t < t′ ⇒ g(t) � g(t′).

ii) Supposing that intC �= ∅ and f is strictly convex. Then the function
g(t), t > 0, is strictly increasing with respect to C, i.e.,

0 < t < t′ ⇒ g(t) � g(t′).

Proof. Let 0 < t < t′. We have, x + tv = λx + (1 − λ)(x + t′v), where,
λ = 1 − t

t′ ∈ (0, 1).
i) Since f is convex then f(x + tv) � λf(x) + (1 − λ)f(x + t′v). Since

λ = 1 − t
t′ this implies f(x+tv)−f(x)

t � f(x+t′v)−f(x)
t′ .

ii) Since f is strictly convex then f(x+tv) � λf(x)+(1−λ)f(x+t′v). Since
λ = 1 − t

t′ this implies f(x+tv)−f(x)
t � f(x+t′v)−f(x)

t′ . The proof is complete. �
Lemma 2.8. ([Proposition 4.3, 6]) Assume that the ordered cone C ⊂ Rm is
closed, convex and pointed. Let D ⊂ Rn be a nonempty convex set and f : D ⊂
Rn → Rm be convex. Let x ∈ D and v ∈ TD(x). If the set { f(x+tv)−f(x)

t
|t > 0}

is bounded below then f ′(x; v) exists.
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Corollary 2.9. Assume that the ordered cone C ⊂ Rm is closed, convex and
pointed. Let D ⊂ Rn be a nonempty convex set and f : D ⊂ Rn → Rm

be convex. Let x ∈ riD (where, riD denotes the relative interior of D) and
v ∈ TD(x). Then f ′(x; v) exists.

Proof. Since x ∈ riD then TD(x) is a subspace. Hence, −v ∈ TD(x). Then
there exist t1, t2 > 0 such that x + t1v, x − t2v ∈ D. Let 0 < t < t1. One
has, x = λ(x + tv) + (1 − λ)(x − t2v), where, λ = t2

t+t2
∈ (0, 1). It implies,

f(x) � λf(x + tv) + (1 − λ)f(x − t2v). Take λ = t2
t+t2

into account, we have

f(x) − f(x − t2v)
t2

� f(x + tv) − f(x)
t

, ∀t ∈ (0, t1).

Then f ′(x; v) exists by Lemma 2.8. The proof is complete. �
Denote by L(Rn, Rm) the space of linear maps from Rn to Rm.

Definition 2.10. Let D ⊂ Rn be a nonempty set. A map F : D → L(Rn, Rm)
is said to be monotone with respect to C if

(F (x) − F (y))(x − y) � 0, ∀x, y ∈ D,

i.e.,
(F (x)− F (y))(x − y) ∈ C, ∀x, y ∈ D.

Supposing that intC �= ∅. F is said to be strictly monotone if

(F (x) − F (y))(x − y) � 0, ∀x, y ∈ D, x �= y,

i.e.,
(F (x) − F (y))(x − y) ∈ intC, ∀x, y ∈ D, x �= y.

We recall a well-known result of Fenchel [8] and Mangasarian [9] which will
be needed in the next section.

Theorem 2.11. Let D ⊂ Rn be a nonempty, open and convex set and let
f : D → R be a differentiable function on D. Then

i) f is convex if and only if Df is a monotone map on D, i.e.,

(Df(y) − Df(x))(y − x) ≥ 0, ∀x, y ∈ D.

ii) f is strictly convex if and only if Df is strictly monotone, i.e.,

((Df(y) − Df(x))(y − x) > 0, ∀x, y ∈ D, x �= y.
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3 Characterizations of convex vector functions

In this section, we assume that Rm is ordered by a closed and convex cone C.
Let g : (a, b) → R and let x ∈ (a, b). We recall that the right derivative of g at
x is defined as the following limit (if such exists)

g′+(x) = lim
y↓x

g(y) − g(x)
y − x

.

Lemma 3.1. Let D ⊂ Rn be a nonempty convex set and let f : D → R.
Assume that for every x ∈ D, v ∈ TD(x), f ′(x; v) exists finitely. Then,

i) f is convex if only if

f(y) − f(x) ≥ f ′(x; y − x), ∀x, y ∈ D.

ii) f is strictly convex if and only if

f(y) − f(x) > f ′(x; y − x), ∀x, y ∈ D, x �= y.

Proof. i) ⇒ : If f is convex then, for every x, y ∈ D, the function ϕ(t) =
f(x+t(y−x))−f(x)

t is increasing on (0.1]¿ This implies

f(y) − f(x) ≥ lim
t↓0

f(x + t(y − x)) − f(x)
t

= f ′(x; y − x).

⇐ : Suppose in the contrary that f is not convex. Then there exist x0, y0 ∈
D, λ0 ∈ (0, 1) such that

f(x0 + λ0(y0 − x0)) > f(x0) + λ0(f(y0) − f(x0)). (1)

Put g(t) := f(x0 +t(y0−x0))−f(x0)−t(f(y0)−f(x0)), t ∈ [0, 1]. Since f ′(x; v)
exists and finite for every x ∈ D, v ∈ TD(x) then g(t) is continuous on [0, 1].
By (1), g(λ0) > 0. Since g(0) = g(1) = 0 then g(t) attains maximun at some
t0 ∈ (0, 1). Clearly, g(t0) > 0. Put t1 = sup{t ∈ [0, t0)|g(t) = 0}. Since g is
continuous then g(t1) = 0. Hence, g(t) > 0 for every t ∈ (t1, t0). Then there
exist λ ∈ (t1, t0) such that g′+(λ) ≥ 0. We have,

0 > g(1) − g(λ) = λ(f(y0) − f(x0)) + f(x0) − f(x0 + λ(y0 − x0))
= λ(f(y0) − f(x0)) + f(x0) − f(y0) + f(y0) − f(x0 + λ(y0 − x0))
≥ λ(f(y0) − f(x0)) + f(x0) − f(y0) + (1 − λ)f ′((x0 + λ(y0 − x0); (y0 − x0))
= (1 − λ)[f ′((x0 + λ(y0 − x0); (y0 − x0)) − (f(y0) − f(x0))]
= (1 − λ)g′+(λ) ≥ 0.
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This is a contradiction. Thus, f is convex.
ii) ⇒ : If f is strictly convex then for every x, y ∈ D, x �= y, the function

ϕ(t) = f(x+t(y−x))−f(x)
t

is strictly increasing on (0.1]. This implies,

f(y) − f(x) = ϕ(1) > ϕ(
1
2
) =

f(x + 1
2(y − x)) − f(x)

1
2

≥ lim
t↓0

f(x + t(y − x)) − f(x)
t

= f ′(x; y − x).

⇐ : Suppose in the contrary that f is not strictly convex. Then there exists
x0, y0 ∈ D, x0 �= y0, λ0 ∈ (0, 1) such that

f(x0 + λ0(y0 − x0)) ≥ f(x0) + λ0(f(y0) − f(x0)).

If f(x0 + λ0(y0 − x0)) > f(x0) + λ0(f(y0) − f(x0)) then by a proof similar i)
we get a contradiction. Now consider the case f(x0 + λ0(y0 − x0)) = f(x0) +
λ0(f(y0)− f(x0)). Put g(t) = f(x0 + t(y0 −x0))− f(x0)− t(f(y0)− f(x0)), t ∈
[0, 1]. Then, g(t) is continuous on [0, 1] and g(λ0) = g(0) = g(1) = 0. Put
α1 = min{g(t)|t ∈ [0, λ0]}, α2 = min{g(t)|t ∈ [λ0, 1]}. If α1 = 0 then

0 = g(λ0) − g(0) = f(x0 + λ0(y0 − x0)) − f(x0) − λ0(f(y0) − f(x0))
> λ0[f ′(x0; y0 − x0) − (f(y0) − f(x0)] = λ0g

′
+(0) = 0.

We meet a contradiction. If α2 = 0 we also get a contradiction similarly. Hence,
one has αi < 0, i = 1, 2. By continuity of g, there exist [t1, t2] ⊂ [0, λ0] such
that g(t2) = 0, g(t) < 0, t ∈ [t1, t2], min{g(t)|t ∈ [t1, t2]} > α2. Then there
exist s1 ∈ [t1, t2] such that g′+(s1) ≥ 0. By the continuity of g, there exists
s2 ∈ [λ0, 1] such that min{g(t)|t ∈ [λ0, 1]} = g(s2). Then,

0 > g(s2) − g(s1)
= f(x0 + s2(y0 − x0)) − f(x0 + s1(y0 − x0)) − (s2 − s1)(f(y0) − f(x0))
≥ (s2 − s1)[f ′((x0 + s1(y0 − x0); (y0 − x0)) − (f(y0) − f(x0))]
= (s2 − s1)g′+(s1) ≥ 0.

This is a contradiction. Thus, f is strictly convex. �
Theorem 3.2. Let D ⊂ Rn be a nonempty convex set and let f : D → Rm.
Assume that for every x ∈ D, v ∈ TD(x), f ′(x; v) exists. Then,

i) f is convex if and only if

f(y) − f(x) ∈ f ′(x; y − x) + C, ∀x, y ∈ D.

ii) Supposing that intC �= ∅. f is strictly convex if and only if

f(y) − f(x) ∈ f ′(x; y − x) + intC, ∀x, y ∈ D, x �= y.
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Proof. From hypothesises and Lemma 2.1, (ξf)′(x; v) exists for every ξ ∈
L(Rm, R), x ∈ D, v ∈ TD(x).

i) From Lemma 2.6, Lemma 3.1, Lemma 2.1, Lemma 2.4, we have

f is convex ⇔ ξf is convex, ∀ξ ∈ C ′ \ {0}.
⇔ ξf(y) − ξf(x) ≥ (ξf)′(x; y − x), ∀x, y ∈ D, ξ ∈ C ′ \ {0}.
⇔ ξ

[
f(y) − f(x) − f ′(x; y − x)

] ≥ 0, ∀x, y ∈ D, ξ ∈ C ′ \ {0}.
⇔ f(y) − f(x) � f ′(x; y − x), ∀x, y ∈ D.

ii) From Lemma 2.6, Lemma 3.1, Lemma 2.1, Lemma 2.4, we have

f is strictly convex ⇔ ξf is strictly convex, ∀ξ ∈ C ′ \ {0}.
⇔ ξf(y) − ξf(x) > (ξf)′(x; y − x), ∀x, y ∈ D, x �= y, ξ ∈ C ′ \ {0}.
⇔ ξ

[
f(y) − f(x) − f ′(x; y − x)

]
> 0, ∀x, y ∈ D, x �= y, ξ ∈ C ′ \ {0}.

⇔ f(y) − f(x) � f ′(x; y − x), ∀x, y ∈ D, x �= y.

The proof is complete. �
When f is differentiable, we get the following corollary which generalizes

the corresponding well-known result in convex analysis.

Corollary 3.3. Let D ⊂ Rn be a nonempty, open and convex set and let
f : D → Rm be differentiable on D. Then,

i) f is convex if and only if

f(y) − f(x) ∈ Df(x)(y − x) + C, ∀x, y ∈ D.

ii) Supposing that intC �= ∅. f is strictly convex if and only if

(f(y) − f(x) ∈ Df(x)(y − x) + intC, ∀x, y ∈ D, x �= y).

Proof. From Lemma 2.2, for every x ∈ D, v ∈ Rn, f ′(x; v) = Df(x)(v) then
by applying Theorem 3.2, we obtain immediately the corollary.

�
A result of C. Cusano, M. Fini and D. Torre in [10] is a very speacial case

of the above theorem.

Corollary 3.4. ([Theorem 4.1, 10]) Assume that the ordered cone C is closed,
convex and pointed. If f : Rn → Rm is convex then

f(y) − f(x) ∈ f ′
D(x; y − x) + C, ∀x, y ∈ Rn.
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Proof. For every x ∈ Rn, v ∈ TRn(x) = Rn, f ′(x; v) exists by Corollary 2.9 .
Hence by Theorem 3.2 i) and Lemma 2.3, we have

f(y) − f(x) � f ′(x; y − x) = f ′
D(x; y − x), ∀x, y ∈ Rn.

The proof is complete. �

The following theorem expands well-known results of Fenchel[8] and Mangasar-
ian[9] to the vector case.

Theorem 3.5. Let D ⊂ Rn be a nonempty, open and convex set and let
f : D → Rm be a differentiable function on D. Then

i) f is convex if and only if Df is a monotone map on D, i.e.,

(Df(y) − Df(x))(y − x) ∈ C, ∀x, y ∈ D.

ii) Supposing that intC �= ∅. f is strictly convex if and only if Df is strictly
monotone, i.e.,

((Df(y) − Df(x))(y − x) ∈ intC, ∀x, y ∈ D, x �= y.

Proof. i) We have

f is convex
⇔ξf is convex, ∀ξ ∈ C ′ \ {0}, ( by Lemma 2.6)
⇔(D(ξf)(y) − D(ξf)(x))(y − x) ≥ 0, ∀x, y ∈ D, ξ ∈ C ′ \ {0}, (Theorem 2.11)
⇔ξ[(Df(y) − Df(x))(y − x)] ≥ 0, ∀x, y ∈ D, ξ ∈ C ′ \ {0}, (by Lemma 2.2)
⇔(Df(y) − Df(x))(y − x) � 0, ∀x, y ∈ D, (by Lemma 2.4).

i) We have

f is strictly convex
⇔ξf is strictly convex, ∀ξ ∈ C ′ \ {0}, ( by Lemma 2.6)
⇔(D(ξf)(y) − D(ξf)(x))(y − x) > 0, ∀x, y ∈ D, ξ ∈ C ′ \ {0}, (Theorem 2.11)
⇔ξ[(Df(y) − Df(x))(y − x)] > 0, ∀x, y ∈ D, ξ ∈ C ′ \ {0}, (by Lemma 2.2)
⇔(Df(y) − Df(x))(y − x) � 0, ∀x, y ∈ D, (by Lemma 2.4).

The proof is complete. �
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4 Optimality without constraint

In this section, the ordered cone C ⊂ Rm is assumed convex.

Definition 4.1. ([Definition 2.1, 1]) Let A ⊂ Rm be nonempty and x ∈ A.
We say that

i) x is an ideal efficient point of A with respect to C if x � a, for every
a ∈ A. The set of ideal efficient points of A is denoted by IMin(A|C)

ii) x is a Pareto efficient point of A with respect to C if for any a ∈ A, a � x
implies x � a. The set of Pareto efficient points of A is denoted by Min(A|C)

iii) x is a properly efficient point of A with respect to C if there exists a cone
K � Rm such that C \ lC ⊂ intK and x ∈ Min(A|K). The set of properly
efficient points of A is denoted by PrMin(A|C)

iv) supposing that intC �= ∅, x is a weakly efficient point of A with respect
to C if x ∈ Min(A|intC ∪ {0}). The set of weakly efficient points of A is
denoted by WMin(A|C).

When there is no afraid of confusion, we omit ’with respect to C’ and ′|C’
in the definition above. It is immediately from definitions that if the ordered
cone C is pointed and IMinA �= ∅ then IMinA is a singleton.

Lemma 4.2. Assume that the ordered cone C ⊂ Rm is convex and pointed.
Let A ⊂ Rm be nonempty and let x∗ ∈ A. Then

i) x∗ ∈ MinA if and only if a /∈ x∗ − (C \ {0}), for every a ∈ A.
ii) Supposing that intC �= ∅. Then, x∗ ∈ WMinA if and only if a /∈

x∗ − intC, for every a ∈ A.

Proof. It is immediately from definitions. �
Definition 4.3. Let D ⊂ Rn be nonempty and let f : D → Rm, x∗ ∈ D. We
say that

i) x∗ is a local ideal (resp., Pareto, properly, weakly) minimum point of f if
there exists a neighbourhood V of x∗ such that f(x∗) ∈ IMin(f(D∩V ) (resp.,
f(x∗) ∈ Min(f(D ∩V ), f(x∗) ∈ PrMin(f(D ∩ V ), f(x∗) ∈ WMin(f(D ∩V )).

ii) x∗ is a global ideal (resp., Pareto, properly, weakly) minimum point of f
(on D) if f(x∗) ∈ IMinf(D) (resp., f(x∗) ∈ Minf(D), f(x∗) ∈ PrMinf(D),
f(x∗) ∈ WMinf(D)).

Proposition 4.4. Assume that the ordered cone C ⊂ Rm is convex and
pointed. Let D ⊂ Rn be a nonempty and convex set. Let f : D ⊂ Rn → Rm

be convex and let x∗ ∈ D. If x∗ is a local G minimum point of f then x∗ is
also a global G minimum point of f, where, G ∈ {Pareto, ideal, properly}.
Supposing that intC �= ∅ then the statement above is also valid for the case
G = weakly.

Proof. From assumptions, there exists a neighbourhood V of x∗ such that
f(x∗) ∈ G Min(f(D)∩ V ). Let x ∈ D be arbitrary. then there exists t ∈ (0, 1)
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such that x∗ + t(x − x∗) ∈ D ∩ V . Since f is convex then

(1 − t)f(x∗) + tf(x) ∈ f(x∗ + t(x − x∗) + C.

Firstly, consider the case G = Pareto. By Lemma 4.2, one has, f(x∗ + t(x −
x∗) /∈ f(x∗)− (C \ {0}). Hence, (1− t)f(x∗) + tf(x) /∈ f(x∗)− (C \ {0}). This
implies f(x) /∈ f(x∗) − (C \ {0}), i.e., f(x∗) ∈ Minf(D). Thus, x∗ is a global
Pareto minimum point of f on D.

For the cases G = ideal, weakly, the proofs are completely similar.
Finally, consider the case G = properly. Then there exists a cone K � Rm

such that C \ {0} ⊂ intK and f(x∗) ∈ Min(f(D ∩ V )|K). If f(x) ∈ f(x∗)−K
then (1 − t)f(x∗) + tf(x) ∈ f(x∗) − K. Then, f(x∗ + t(x − x∗) ∈ f(x∗) − K.
This implies f(x∗) ∈ f(x∗ + t(x − x∗) − K since f(x∗) ∈ Min(f(D ∩ V |K)).
Hence, f(x∗) ∈ (1 − t)f(x∗) + tf(x) − K, i.e., f(x∗) ∈ f(x) − K. Thus,
f(x∗) ∈ Min(f(D)|K). This means that x∗ is a global properly minimum
point of f . �
Proposition 4.5. Assume that the ordered cone C is convex and pointed. Let
D ⊂ Rn be a nonempty and convex set. Let f : D ⊂ Rn → Rm be convex.
Then the set of ideal minimum points of f is a convex set.

Proof. Let x∗, y∗ be ideal minimum points of f , λ ∈ (0, 1). Since C is pointed
then, f(x∗) = f(y∗) = IMinf(D). By convexity of f , one has, f(λx∗ + (1 −
λ)y∗) � λf(x∗) + (1 − λ)f(y∗) = f(x∗). This implies f(λx∗ + (1 − λ)y∗) =
f(x∗) = IMinf(D). Hence, λx∗ +(1−λ)y∗ is an ideal minimum point of f . �
Remark 4.6. In general, the set of Pareto minimum points of a convex vector
function is not convex. For instant, consider R2 with the order generated by the
nonnegative orthant cone. Let D = {(x, y)|(x−1)2 +(y−1)2 � 1, y � −x+1}
and let f be the identify map on D. Then f is convex, (0, 1), (1, 0) are Pareto
minimum points of f . However, z = 1

2 (0, 1)+ 1
2(1, 0) is not a Pareto minimum

point of f .

Proposition 4.7. Assume that the ordered cone C is convex and pointed with
intC �= ∅. Let D ⊂ Rn be a nonempty and convex set and let f : D ⊂ Rn → Rm

be strictly convex. If f has an ideal minimum point then this point is unique.

Proof. Suppose in the contrary that f has two ideal minimum points x∗, y∗.
Then f(1

2
x∗ + 1

2
y∗) � 1

2
f(x∗) + 1

2
f(y∗) = IMinf(D). We get a contradiction.

�
Remark 4.8. We note that the set of Pareto-minimum points of a strictly
convex vector function in general is not a singleton. For instant, let’s consider
R2 with the order generated by the cone C := {(x, y) ∈ R2|y−x ≥ 0, y+x ≥ 0},
f : R → R2 defined by f(x) = (x, x2). Then f is strictly convex. However,
the set of Pareto minimum points of f is the interval [−1

2
, 1

2
], obviously not a

singleton.
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Theorem 4.9. Assume that the ordered cone C is convex, closed and pointed.
Let D ⊂ Rn be convex and nonempty and let f : D → Rm, x∗ ∈ D. Assume
that f ′(x∗; v) exists, for every v ∈ TD(x∗). We have

i) If x∗ is a local G minimum point of f, then

0 ∈ G Min{f ′(x∗; v)|v ∈ TD(x∗)},
where, G ∈ {Ideal, properly}. In addition, assume that f is convex, then the
converse statement is also true.

ii) Supposing that intC �= ∅. If x∗ is a local weakly minimum point of f,
then

0 ∈ WMin{f ′(x∗; v)|v ∈ TD(x∗)}.
In addition, assume that f is convex, then the converse statement is also true.

iii) Supposing that f is convex. If 0 ∈ Min{f ′(x∗; v)|v ∈ TD(x∗)}, then x∗
is a Pareto-minimum point of f.

Proof. i) G=ideal. Let v ∈ TD(x∗) be arbitrary. For t > 0 small enough,
one has, f(x∗+tv)−f(x∗)

t � 0. By taking t ↓ 0, since C is closed, we have
f ′(x∗; v) � 0. Hence, 0 ∈ IMin{f ′(x∗; v)|v ∈ TD(x∗)}.

Conversely, assume that f is convex. From Theorem 3.2, for every x ∈ D,
one has

f(x) − f(x∗) � f ′(x∗, x − x∗) � 0.

This means that f attains ideal minimum at x∗.
G=properly. There exists a neighbourhood V of x∗ and there exists a convex

cone K � Rm such that C \ {0} ⊂ intK and f(x∗) ∈ Min(f(D ∩ V |K). Let
v ∈ TD(x∗) be arbitrary. By Lemma 2.6, {0} ∪ intK is a pointed cone. From
Lemma 4.2, for t > 0 small enough, one has f(x∗ + tv) /∈ f(x∗)− intK. Hence,
f(x∗+tv)−f(x∗)

t /∈ −intK. Take t ↓ 0, one has, f ′(x∗; v) /∈ −intK. Therefore,

0 ∈ PrMin({f ′(x∗; v)|v ∈ TD(x∗)}|C).

Conversely, there exists a convex cone K � Rm such that C \ {0} ⊂ intK
and 0 ∈ Min({f ′(x∗; v)|v ∈ TD(x∗)}|K). Since {0} ∪ intK is a pointed cone
then,

f ′(x∗; v) /∈ −intK, ∀v ∈ TD(x∗). (2)

From asumptions and Theorem 3.2, for every x ∈ D, one has

f(x) − f(x∗) ∈ f ′(x∗, x− x∗) + C. (3)

By (2) and (3), we have f(x) − f(x∗) /∈ −intK. This implies, f(x∗) ∈
Min(f(D)|{0} ∪ intK), i.e., x∗ is a properly minimum point of f .

ii) Let v ∈ TD(x∗) be arbitrary. By Lemma 4.2, for t > 0 small enough, one
has f(x∗ + tv) /∈ f(x∗) − intC. Hence, f(x∗+tv)−f(x∗)

t
/∈ −intC. Take t ↓ 0, we

have f ′(x∗; v) /∈ −intC, i.e. , 0 ∈ WMin{f ′(x∗; v)|v ∈ TD(x∗)}.
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Conversely, assume that f is convex. By assumptions and Theorem 3.2, for
every x ∈ D, one has

f(x) − f(x∗) � f ′(x∗, x− x∗) /∈ −intC.

This implies f(x) − f(x∗) /∈ −intC. Hence, f(x∗) ∈ WMinf(D).
iii) By assumptions and Theorem 3.2, for every x ∈ D, one has

f(x) − f(x∗) � f ′(x∗, x− x∗) /∈ −(C \ {0}).
Hence f(x)−f(x∗) /∈ −(C \{0}),i.e., f(x∗) ∈ Minf(D). The proof is complete.
�
Remark 4.10. We note that the converse statement of Theorem 4.9 iii) is not
true in general. For instant, let f : R → R2 defined by

f(x) =

{
(x, x2), x < 0
(x, 0), x ≥ 0.

R2 is ordered by the nonnegative orthant cone. Then f is convex, 0 is a
Pareto-minimum point of f . However, f ′(0;−1) = (−1, 0) ≺ (0, 0). Hence
(0, 0) /∈ Min{f ′(0; v)|v ∈ TD(0)}.
Definition 4.11. Let D ⊂ Rn be nonempty and x∗ ∈ D. Let A ⊆ Rn be an
open set which contains D and let f : A → Rm be differentiable at x∗. We say
that x∗ is a Pareto (resp., ideal, properly, weakly) stable point of f on D if

0 ∈ Min{Df(x∗)(v)|v ∈ TD(x∗)},
(resp.,0 ∈ IMin{Df(x∗)(v)|v ∈ TD(x∗)}, 0 ∈ PrMin{Df(x∗)(v)|v ∈ TD(x∗)},
0 ∈ WMin{Df(x∗)(v)|v ∈ TD(x∗)}.)

The following corollary generalizes well-known results in the scalar case on
optimal conditions for differentiable functions.

Corollary 4.12. Assume that the ordered cone C ⊂ Rm is convex, closed and
pointed. Let D ⊂ Rn be nonempty and convex. Let x∗ ∈ D, A ⊂ Rn be an
open set which contains D. Let f : A → Rm be differentiable at x∗. Then,

i) If x∗ is a local G minimum of f on D then, x∗ is a G stable point of f
on D, where G ∈ {ideal, properly}. In addition, assume that f is convex on
D, then the converse statement is also true.

ii) Supposing that intC �= ∅. If x∗ is a local weakly minimum of f on D
then, x∗ is a weakly stable point of f on D. In addition, assume that f is
convex on D, then the converse statement is also true.

iii) Supposing that f is convex. If x∗ is a Pareto stable point of f on D
then, x∗ is a Pareto minimum point of f on D.

Proof. It is immediately from Theorem 4.9 and from the equality f ′(x∗, v) =
Df(x∗)(v), for every v ∈ TD(x∗). �
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5 Optimality with constraints

Let f, g, g1, ..., gq, h1, ..., hp be functions from Rn to Rm. Assume that Rm is or-
dered by a convex, closed and pointed cone C . Let us consider the constrained
vector optimization problem

Minf(x){
hi(x) = 0, i = 1, ..., p (P1)
gj(x) ∈ −C, j = 1, ..., q.

When intC �= ∅, we also consider the problem

Minf(x){
hi(x) = 0, i = 1, ..., p (P2)
g(x) /∈ intC.

Denote by Dk the set of feasible solutions of (Pk), k = 1, 2, i.e.,

D1 = {x ∈ Rn|hi(x) = 0, i = 1, ..., p; gj(x) ∈ −C, j = 1, ..., q}
D2 = {x ∈ Rn|hi(x) = 0, i = 1, ..., p; g(x) /∈ intC}.

Definition 5.1. Let x̄ ∈ Dk, k = 1, 2. We say that x̄ is an ideal (resp., weakly)
optimal solution of (Pk) if x̄ is an ideal minimum (resp., weakly minimum)point
of f on Dk.

Lemma 5.2. If gj, j = 1, ..., q, are convex and hi, i = 1, ..., p, are affine then
D1 is convex.

Proof. Let x, y ∈ D1, λ ∈ [0, 1]. Then, gj(x), gj(y) � 0 and hi(x) = hi(y) = 0.
Since C is convex then λgj(x)+(1−λ)gj (y) � 0. By convexity of gj , j = 1, ..., q,
then gj(λx + (1 − λ)y) � 0. Since hi, i = 1, ..., p, are affine then hi(λx + (1 −
λ)y) = 0. Hence, λx + (1 − λ)y ∈ D1. Thus, D1 is convex.

�
Assume that g, gj, hi are differentiable at x̄ ∈ Rn. Put

A(x̄) := {j|gj(x̄) = 0}
S1(x̄) := {v ∈ Rn|Dhi(x̄)(v) = 0, i = 1, ..., p;Dgj(x̄)(v) ∈ −C, j ∈ A(x̄)}

S2(x̄) :=

{
{v ∈ Rn|Dhi(x̄)(v) = 0, i = 1, ..., p}, if g(x̄) �= 0,

{v ∈ Rn|Dhi(x̄)(v) = 0, i = 1, ..., p; Dg(x̄)(v) /∈ intC}, if g(x̄) = 0.

Lemma 5.3. i) If gj, hi, j = 1, ..., q, i = 1, ...p, are differentiable at x̄ ∈ D1

then TD1(x̄) ⊆ S1(x̄).



116 On Characterizations of Convex Vector Functions and Optimization

ii) If g, hi, i = 1, ..., p, are differentiable at x̄ ∈ D2 then TD2 (x̄) ⊆ S2(x̄).

Proof. i) Let v ∈ TD1(x̄) be arbitrary. For t > 0 small enough, one has
hi(x̄ + tv) = 0, gj(x̄ + tv) � 0, i = ¯1, p, j ∈ A(x̄). This together closedness of C
imply

Dhi(x̄)(v) = h′
i(x̄; v) = lim

t↓0
hi(x̄ + tv) − hi(x̄)

t
= 0, i = ¯1, p

Dgj(x̄)(v) = g′j(x̄; v) = lim
t↓0

gj(x̄ + tv) − gj(x̄)
t

� 0, j ∈ A(x̄).

Hence, v ∈ S1(x̄).
ii) It is completely similar the proof above. �

Theorem 5.4. Assume that f is convex, D1 is convex and f, gj, hi, j =
1, ..., q, i = 1, ..., p, are differentiable at x̄ ∈ D1. If there exist numbers λ̄1, ..., λ̄q ≥
0, μ̄1, ..., μ̄p ∈ R such that

(i) Df(x̄) +
q∑

j=1

λ̄jDgj(x̄) +
p∑

i=1

μ̄iDhi(x̄) = 0

(ii) λ̄jgj(x̄) = 0, ∀j = 1, ..., q

then x̄ is an ideal optimal solution of (P1).

Proof. Let v ∈ S1(x̄) be arbitrary. From (i) and (ii), one has

Df(x̄)(v) = −
q∑

j=1

λ̄jDgj(x̄)(v) +
p∑

i=1

μ̄iDhi(x̄)(v) −
∑

j∈A(x̄)

λ̄jDgj(x̄)(v) � 0.

By Lemma 5.3, Df(x̄)(v) � 0, for every v ∈ TD1(x̄). Hence, x̄ is an ideal stable
point of f on D1. Then by Corollary 4.12, x̄ is an ideal minimum point of f
on D1. The theorem is proved. �
Theorem 5.5. Let f be convex, D2 be convex and letf, g, hi, i = 1, ..., p, be
differentiable at x̄ ∈ D2. Assume that there exist numbers λ̄ ≥ 0, μ̄1, ..., μ̄p ∈ R
such that

(i) Df(x̄) + λ̄Dg(x̄) +
p∑

i=1

μ̄iDhi(x̄) = 0

(ii) λ̄g(x̄) = 0.

Then,
a) If g(x̄) �= 0 then x̄ is an ideal optimal solution of (P2).
b) If g(x̄) = 0 then x̄ is a weakly optimal solution of (P2). Proof. a) From
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(ii) one has λ̄ = 0. Then (i) implies

Df(x̄) −
p∑

i=1

μ̄iDhi(x̄).

Let v ∈ S2(x̄) be arbitrary. One has Df(x̄)(v) −
p∑

i=1
μ̄iDhi(x̄)(v) = 0. By

Lemma 5.3, one has Df(x̄)(v) = 0, for every v ∈ TD2 (x̄). Hence, x̄ is an ideal
stable point of f on D2. By Corollary 4.12, x̄ is an ideal optimal solution of
(P2).

b) Let v ∈ S2(x̄) be arbitrary. From (ii), we have, Df(x̄)(v) = −λ̄Dg(x̄)(v)−
p∑

i=1
μ̄iDhi(x̄)(v) �� 0. By Lemma 5.3, one has Df(x̄)(v) �� 0, for every

v ∈ TD2 (x̄), i.e., 0 ∈ WMin{Df(x̄)(v)|v ∈ TD2 (x̄)}. By Corollary 4.12, x̄
is a weakly optimal solution of (P2). The proof is complete.

�
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