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Abstract

Let Cn be the nth Fibonacci number (Cn = Fn) or the nth Lucas
number (Cn = Ln). For 1 ≤ k ≤ m, let[

m

k

]
C

=
CmCm−1 · · ·Cm−k+1

C1 · · ·Ck

be the corresponding C-nomial coefficient. In this paper, we prove that
the only solutions of the Diophantine equation[

m

k

]
C

= makb,

in positive integers m, k, a, b with a > 1, are (m, k, a, b) = (1, 1, a, b), (5, 1, 1, b),
(12, 1, 2, b), and (5, 3, 1, 1), for Cn = Fn and (m, k, a, b) = (1, 1, a, b) in
the case Cn = Ln.

1 Introduction

Let (Cn)n≥1 be a Lucas sequence given by

Cn+2 = Cn+1 + Cn, for n ≥ 1,
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where the values C0 and C1 are previously fixed. For instance, if C0 = 0 and
C1 = 1, then Cn = Fn is the well-known Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Also, if C0 = 2 and C1 = 1, the sequence Cn = Ln gives the Lucas numbers

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ...

According to the Binet’s formula, for n ≥ 0

Fn =
αn − βn

α− β
and Ln = αn + βn,

where α = (1 +
√

5)/2 (the golden number) and β = (1 −√
5)/2 = −1/α.

It is well-known that the only solutions of Fm = m are m = 1 and 5 and
for Lm = m one has m = 1. In fact, we have Cm > m, for all m > 5 (this can
be proved by mathematical induction).

The C-nomial coefficients are defined by[
m

k

]
C

=
CmCm−1 · · ·Cm−k+1

C1 · · ·Ck
,

for 1 ≤ k ≤ m. For instance, if Cn = Fn, we have the well-known Fibonomial
coefficients (sequence A001656 in OEIS1 [7]). Some results on the spacing of
these numbers can be found in [5]. We also refer the reader to [6] for several
interesting identities involving this sequence.

Since C-nomial coefficients generalize the concept of the Fibonacci and Lu-
cas numbers, as

[
m
1

]
C

= Cm, it is worthwhile to find the solutions of the general
equation [

m

k

]
C

= makb. (1.1)

The goal of this paper is to determine all the solutions of Diophantine equation
(1.1) when Cm = Fm, Lm. Our main results are the following.

Theorem 1. The only solutions of the Diophantine equation[
m

k

]
F

= makb

are (m, k, a, b) = (1, 1, a, b), (5, 1, 1, b), (12, 1, 2, b), and (5, 3, 1, 1).

Theorem 2. The only solution of the Diophantine equation[
m

k

]
L

= makb

is (m, k, a, b) = (1, 1, a, b).

We will prove these results in the next section.
1On-Line Encyclopedia of Integer Sequences.
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2 Proofs of Theorems 1 and 2

Before the proofs of Theorems 1 and 2, we will recall some interesting and
helpful properties of these sequences. Their proofs are well-known and can be
found in any good text about sequences.

Lemma 1. Let (Fn)n≥0 be Fibonacci numbers and let (Ln)n≥0 be Lucas num-
bers, then

(i) F2n = FnLn;

(ii) L2
n − Ln−1Ln+1 = 5(−1)n;

(iii) For all n ≥ 3,

αn−2 ≤ Fn ≤ αn−1 and αn−1 ≤ Ln ≤ 2αn;

(iv) If p is a prime number, then Lp ≡ 1 (mod p) (see [4, Theorem 7]).

Let Cn be Fibonacci or Lucas numbers. A primitive divisor p of the Cn is
a prime factor of Cn which does not divide 5

∏
1≤j≤n−1 Cj. It is known that a

primitive divisor p of Cn exists whenever n ≥ 13 (see, for example, [3]). The
above statement is usually referred to as the Primitive Divisor Theorem (see
[1] and [2] for the most general version). It is also known that such a primitive
divisor p satisfies p ≡ ±1 (mod n). Now, we have the tools to study equation
(1.1).

2.1 Proof of Theorem 1: the Fibonacci case.

We consider equation (1.1) with Cn = Fn. Suppose that m > max{24, k}. By
the Primitive Divisor Theorem, there exists a primitive prime factor p for Fm.
Since

FmFm−1 · · ·Fm−k+1 = makbF1 · · ·Fk, (2.1)

and p does not divide
∏k

j=1 Fj, then p divides makb. Therefore, p divides k,
because p ≡ ±1 (mod m). So it does not divide m. Moreover, the congruence
p ≡ ±1 (mod m) implies that p ≥ m − 1. Thus, we conclude that m − 1 ≤
p ≤ k < m and then k = p = m − 1 which implies that m is an even number.
Now we can use item (i) of Lemma 1 to conclude that Fm = Fm/2Lm/2. Also
equation (2.1) becomes

Fm = ma(m − 1)b. (2.2)

As m > 24, then m/2 > 12 and there exists a primitive prime factor q of Fm/2.
Note that q divides Fm but does not divides m (because q ≡ 1 (mod m/2)).
It follows that q divides m − 1 = p and hence p = q. This contradicts the fact
that p does not divides Fm/2.
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For the case k = 1, one can see that the solutions are (1, 1, a, b), (5, 1, 1, b),
and (12, 1, 2, b). For the other cases, we need to determine an upper bound for
the sum a + b. So we will use item (iii) in Lemma 1. Thus, we have(

Fm

F1

)
< αm−1 and

(
Fm−t

Ft+1

)
< αm−2t, for 1 ≤ t ≤ k − 1.

Therefore, we obtain[
m

k

]
F

≤ αm−1+m−2+···+m−2(k−1) = αm−1+(m−k)(k−1). (2.3)

On the other hand, one can see that
[
m
k

]
F

= makb ≥ ka+b. Combining this
with inequality (2.3), we immediately get, for 2 ≤ k < m ≤ 24,

a + b ≤ (m − 1) + (m − k)(k − 1)
2 log k

< 32.542,

as logα < 1/2 and the maximum occurs when m = 24 and k = 9. So for the
remaining cases, it suffices to test the values in the obtained range. Therefore,
we used a simple program in Mathematica [8]. It took a few minutes to show
that the only zero of the difference

[
m
k

]
F
− makb in the range 2 ≤ k < m ≤

24, 2 ≤ a ≤ 32, and 1 ≤ b ≤ 32 − a is (m, k, a, b) = (5, 3, 1, 1). This completes
the proof of Theorem 1.

2.2 Proof of Theorem 2: the Lucas case.

In that case, equation (1.1) becomes

LmLm−1 · · ·Lm−k+1 = makbL1 · · ·Lk. (2.4)

Suppose that m > max{12, k}, by using the Primitive Divisor Theorem, we get
p = k = m − 1 > 3. Thus we will only consider the solutions of

Lm = ma(m − 1)b. (2.5)

Here the parity of m is not useful, since there is no multiplicative identity for
Lm. Actually, one has L2n = (5F 2

n + L2
n)/2. Thus the method in the previous

proof is not applicable. Instead, we explore the primality of p.
First, note that b ≥ 1. Otherwise Lm = ma and thus any primitive divisor

of Lm must divide m which contradicts the congruence p ≡ ±1 (mod m).
Therefore, as p = m − 1, from equation (2.5), we deduce

Lp+1 = (p + 1)apb ≡ 0 (mod p).

By item (ii) of Lemma 1, one has −5 = L2
p−Lp−1Lp+1 ≡ L2

p (mod p). Combin-
ing this with item (iv) of Lemma 1, we see that p divides 6, which is impossible.
Therefore, one must have m ≤ 12.
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Item (iii) of Lemma 1 leads to

ka+b ≤
(

Lm

L1

)
· · ·

(
Lm−k+1

Lk

)
≤ 2kαk(m−k+1).

This implies

a + b ≤ k(log 2 + (m − k + 1) logα)
logk

< 15.9,

and the maximum occurs for m = 11 and k = 2. Again here we used a
short program written in Mathematica [8] to show in a few seconds that the
difference

[
m
k

]
L
− makb is not zero in the range 2 ≤ k < m ≤ 12, 2 ≤ a ≤ 15

and 1 ≤ b ≤ 15 − a. This completes the proof of Theorem 2.
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