
East-West J. of Mathematics: Vol. 13, No 1(2011) pp. 67-78

A STRONGLY POLYNOMAL- TIME

ALGORITHM FOR A CLASS OF INTEGER

PROGRAMMING PROBLEMS

Vo Van Tuan Dung
HoChiMinh City University of Industry

Ho Chi Minh city, Vietnam
e-mail: vvtdung@gmail.com

Abstract

In this paper a strongly polynomial-time algorithm is proposed for
solving exactly a class of integer programming problems which is basically
to minimize the pointwise maximum of n affine functions under m semi-
assignment constraints and upper bound constraints. The algorithm is
based on a numbering technique for improving feasible solutions.

1 INTRODUCTION

Given an m × n matrix A = (aij)m×n, where aij ∈ {0, 1}, and given posi-
tive integer numbers pi (0 < pi ≤ n), i = 1, 2, . . . , m, consider the following
optimization problem:

(P) max
1≤j≤n

m∑
i=1

xij → min (1)

subject to
n∑

j=1

xij = pi, i = 1, 2, . . . , m (2)

0 ≤ xij ≤ aij, xij is an integer, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (3)

This formulation shows that (P) is an integer nonlinear programming prob-
lem. However, it is easily seen that (P) may be reduced to finding an integer

Key words: Integer programming problem, maximum flow problem, strongly polynomial-
time algorithm.
2000 AMS Mathematics Subject Classification: Primary 90C08; Secondary 65K05, 49M29

67

68 A strongly polynomial-time algorithm for....

optimal solution of the following integer linear programming problem.

(Q)min

⎧⎨
⎩z|

n∑
j=1

xij ≥ pi, ∀i;
m∑

i=1

xij ≤ z,∀j; 0 ≤ xij ≤ aij,∀i, j; 0≤ is an integer

⎫⎬
⎭ .

(Since z is an integer, if (Q) has a feasible solution then (Q) has at least
one integer optimal solution).

It should be noted that requiring integer values for the xij variables is
essential, because problem (P) may exhibit an integrality gap, i.e. if the integer
restriction on xij is deleted the optimal value (1) may be reduced, as the
example given at the end of this paper illustrates.

Problem (P) has s =
∑

i,j aij 0−1 variables and m linear constraints besides
s upper bound constraints in (3). In addition, equality constraint (2) may also
be replaced by the following inequality constraint without changing the optimal
solution value to (P).

n∑
j=1

xij ≥ pi, i = 1, 2, . . . , m

Problem (P) can be interpreted as follows: there are m students and n
subjects which the students have to choice to study. The number of subjects
required for student i is pi. The coefficient aij represents the willingness of
student i to study subject j (aij = 1 if student i is willing to study subject
j and aij = 0 if not). The question is how to arrange the students to study
the subjects so that each student can study the number of subjects required
for him and so that the numbers of students studying different subjects are as
similar as possible.

One more application of (P) can be stated as follows. There are m seminars,
each of which takes one day in an appropriate seminar-room. Let us consider
n seminar-rooms available for the seminars. We suppose that

aij =
{

1, if seminar-room j is admissible for seminar i,
0, otherwise (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

Moreover, we assume that each seminar occupies only one appropriate sem-
inar room. The problem is to determine an assignment of the seminars to the
semainar-rooms in order to minimize the number of days needed to hold all
seminars.

Let us denote

xij =
{

1, if seminar i is assigned to seminar-room j,
0, otherwise (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

Obviously, problem (P) with pi = 1, i = 1, 2, . . . , m, is a mathematical
model for the above problem. Objective function (1) in this case indicates the
number of days needed to hold all seminars.

V.V. Tuan Dung 69

The model of problem (P) was studied in [5] and [6]. A polynomial-time
algorithm is described in [5], which reduces problem (P) to solving a finite
number of maximum flow problems with p = m+n +2 ≈ O(m+n) nodes and
q =

∑
i,j aij +m+n ≈ O(mn) arcs. Its running time is O(OMF×log2 n), where

OMF is the running time of any polynomial-time maximum flow algorithm. For
instance, for Edmonds-Karp’s (1969) algorithm, OMF is O(pq2) and for Dinic’s
(1970) algorithm it is O(p2q), where p is the number of nodes and q the number
of arcs in the network (see [1], [2] for more details). Thus, the complexity of
the algorithm described in [5] is O((m+n)m2n2 log2 n), i.e. O(n5 log2 n) when
m ≈ n, if the Edmonds-Karp algorithm is used and it is O((m+n)2mn log2 n),
i.e. O(n4 log2 n) when m ≈ n, if the Dinic algorithm is used for maximum flow.
To our knowledge, a number of other polynomial-time algorithms for various
versions of the convex cost flow problem have been developed, including those
of Minoux [3] and [4].

Exploiting the special structure of problem (P), below we shall develop a
quite different algorithm for solving exactly (P) which has the following fea-
tures:

1. it is a strongly polynomial-time algorithm; its running time is O(m2n2)
and O(n4) when m ≈ n. This complexity result is better than that of
the network flow algorithm proposed in [5].

2. it is based on a numbering technique, commonly used in solving trans-
portation problems, to improve feasible solutions, hence it does not make
direct use of maximum flow algorithms;

3. it can easily be extended to more general objective function cases (e.g.
the pointwise maximum of some increasing functions) or to the case where
the aij values are arbitrary nonnegative integers.

2 PRELIMINARY RESULTS

As usual for convenience we agree that a matrix x = {xij} whose entries satisfy
(2) and (3) is called a feasible solution of (P), a feasible solution achieving the
minimum of (1) is called an optimal solution of (P).

Let

ai =
n∑

j=1

aij , i = 1, 2, . . . , m; bj =
m∑

i=1

aij, j = 1, 2, . . . , n; p =
m∑

i=1

pi > 0

(ai denotes the number of subjects agreeable to student i, bj represents the
number of students willing to study subject j and p is the total number of
subjects required for all the students).

70 A strongly polynomial-time algorithm for....

It is proved in [5] that a necessary and sufficient condition for the existence
of an optimal solution to (P) is that

ai ≥ pi for all i = 1, 2, . . . , m. (4)

Condition (4) is very simple and easily checked. So, we assume that (P)
satisfies this condition. It is also natural to suppose that bj > 0 for all j =
1, 2, . . . , n, because if bj = 0 for some j then subject j must be deleted (i.e.
there is no student who wants to study the subject).

For the sake of convenience, we associate with each feasible solution x =
{xij} of (P) a table consisting of m rows and n columns, in which each of
the rows corresponds to a student and each of the columns corresponds to a
subject. The cell at the intersection of row i and column j is denoted by (i, j).
A feasible solution x = {xij} of (P) will correspond to a table consisting of
zeros and ones in its cells. A cell (i, j) is called black if aij = 0 (xij = 0 for
all black cells (i, j), because student i is not willing to study subject j). The
remaining cells will be divided into two classes: white cells if xij = 0 (student
i is willing to study subject j, but he is not allocated for this subject) and blue
cells if xij = 1 (student i is allocated for subject j).

Set

txj =
m∑

i=1

xij, j = 1, 2, . . . , n, and tx = max
1≤j≤n

txj (5)

(txj is the number of students allocated for subject j and tx is the objective
function value of x).

For any feasible solution x = {xij} of (P), according to (2) and (5), we have

n∑
j=1

txj =
n∑

j=1

m∑
i=1

xij =
m∑

i=1

n∑
j=1

xij =
m∑

i=1

pi = p (6)

Column j is called full if txj = tx and deficient if txj ≤ tx − 2. It should
be noted that the notions of blue cells, white cells, full columns and deficient
columns are defined with respect to a given feasible solution.

The following proposition gives a simple criterion for an optimal solution of
(P).

Proposition 1. Let x be a feasible solution of (P). If x has no deficient column,
i.e.

tx = txj0 for some j0 ∈ {1, 2, . . . , n} and ∀j �= j0, (7)

then x is an optimal solution of (P).

Proof. From (6) and (7) it follows that

p =
n∑

j=1

txj > n(tx − 1) (8)

V.V. Tuan Dung 71

Suppose the contrary that there exists a feasible solution y of (P) better
than x, i.e. such that

tyj ≥ tx − 1 for all j = 1, 2, . . . , n (9)

Combining (6) and (9) yields

p =
n∑

j=1

tyj ≤ n(tx − 1)

contrary to (8). Thus, x is an optimal solution. �

Consider now a feasible solution x = {xij} of (P). Let C be an alternating
sequence of white and blue cells (with respect to x) joining column j0 to column
jk of the form

C = {(i0, j0), (i0, j1), . . . , (ik−1, jk−1), (ik−1, jk)} , (k ≥ 1), (10)

where (it, jt), t = 0, 1, . . . , k− 1, are white cells (xitjt = 0), white (it, jt+1), t =
0, 1, . . . , k − 1, blue cells (xitjt+1 = 1). Here all the row indices i0, . . . , ik−1

are distinct and so are all the column indices j0, . . . , jk. Let us introduce the
following transformation of x in such a sequence.

Transformation A. Change every white cell in the sequence to blue one and
every blue cell to white one. That is, we set

yitjt = 1, yitjt+1 = 0, t = 0, 1, . . . , k − 1, yij = xij, (i, j) �∈ C.

Since in each of the rows it(t = 0, 1, . . . , k− 1) there are just one white cell
and one blue cell of C, y = {yij} satisfies (2) and (3), i.e. y is also a feasible
solution of (P).

Proposition 2. Let x be a feasible solution of (P). If there exists an alternating
sequence of white and blue cells joining a deficient column to a full column, then
x can be changed to a new feasible solution y of (P) which is better with respect
to the objective function (1) or has smaller number of full columns than x.

Proof. Let C be an alternating sequence of white and blue cells joining a defi-
cient column, say j0 to full column, say jk. Applying Transformation A in C,
we obtain a new feasible solution y = {yij} of (P). Since in each of the columns
jt(t = 1, 2, . . . , k − 1) there are just one white cell and one blue cell of C, we
have

tyj = txj , ∀j �= j0, jk. (11)

On the other hand, as column j0 has only one cell of C (white cell (i0, j0)),
we obtain

tyj0 = txj0 + 1 (12)

72 A strongly polynomial-time algorithm for....

and as column jk has only one cell of C (blue cell (ik−1, jk)), we get

tyjk
= txjk

− 1 (13)

As column j0 is deficient, from (11) - (13) it follows that if jk is a unique full
column with respect to x then ty = tx − 1, i.e. y is better than the current
solution x. In the opposite case, we have ty = tx, i.e. y is no worse than x,
but y has at least one full column fewer than x (as jk will not be a full column
with respect to y). �

We have another optimality criterion.

Proposition 3. Let x be a feasible solution of (P). If there is no alternating
sequence of white and blue cells joining a deficient column to a full column,
then x is an optimal solution of (P).

Proof. Suppose the contrary that there is a feasible solution y = {yij} of (P)
better than x = {xij},i.e. such that

ty = max
1≤j≤n

tyj = max
1≤j≤n

txj = txj0 for some j0 ∈ {1, 2, . . . , n}, (14)

where tx, ty are defined by (5) with respect to x and y respectively. We show
that this leads to a contradiction. Indeed, from (14) we have tyj0 < txj0 . It
follows from (5) that there exists one row i0 such that yi0j0 = 0, xi0j0 = 1
(i.e. (i0, j0) is a blue cell with respect to x). Moreover, as both x and y satisfy
(2) with i = i0, there is one column j1 �= j0 such that yi0j1 = 1, xi0j1 = 0
(i.e. (i0, j1) is a white cell with respect to x). If we still have tyj1 ≤ txj1 , there
exists i1 �= i0 such that yi1j1 = 0, xi1j1 = 1 (i.e. (i1, j1) is a blue cell with
respect to x), and also by (2) there must be one column j2 �= j1 such that
yi1j2 = 1, xi1j2 = 0 (i.e. (i1, j2) is a white cell with respect to x). If j2 �= j0,
we continue this process until either of the following cases occurs.

Case A. A column jr �= {j0, . . . , jr−1} with txjr
< tyjr

is reached. From (14)
we have txjr

< tyjr
< tx, which implies that txjr

≤ tx − 2 as txjr
, tyjr

and tx are
integers. So column jr is deficient. Thus, in this case we obtain an alternating
sequence of white and blue cells of the form

(ir−1, jr), (ir−1, jr−1), . . . , (i0, j1), (i0, j0), (r ≥ 1)

that joins the deficient column jr to the full column j0, contrary to the hy-
pothesis of the proposition.

Case B. We obtain a cycle of cells of the form

C = {(is, js), (is, js+1), . . . , (it, jt), (it, js), (is, js)}, (0 ≤ s < t, t ≥ 1)

or

C = {(is, js+1), (is+1, js+1), . . . , (it−1, jt), (is, jt), (is, js+1)}, (0 ≤ s < t, t ≥ 2),

V.V. Tuan Dung 73

where yiuju = 0, yiu−1ju = 1(s ≤ u ≤ t), yitjs = 1 or yisjt = 0 Setting

ȳiuju = 1, ȳiu−1ju = 0 (s ≤ u ≤ t), ȳitjs = 0

or
ȳisjt = 1, ȳij = yij, ∀(i, j) �∈ C,

we get a new feasible solution ȳ with tȳ = ty (because tȳj =
m∑

i=1
ȳij = tyj for all

j = 1, . . . , n).
If ȳ still differs from x, the above process will be repeated with y replaced

by ȳ. As the number of components by which ȳ and x differ will decrease by
at least four when Case B occurs, after a finite number of repetitions we must
have ŷ = x and, at the same time, tŷ = ty , i.e. tx = tŷ = ty, which contradicts
(14). �

One question now to be solved is how to find an alternating sequence of
white and blue cells joining a deficient column to a full column, whenever such
a sequence exists. To answer this question we consider the following procedure
for rows and columns numbering.

Rows and Columns Numbering Procedure
First of all, we assign number 0 to each column j which is full (txj = tx). If

column j is numbered, we assign number j to each row i which has not yet been
numbered and has xij = 1 ((i, j) is a blue cell). Then, if row i is numbered,
we assign number i to each column j which has not yet been numbered and
has aij − xij = 1 (this is equivalent to aij = 1, xij = 0, i.e. (i, j) is a white
cell) and so on. The above procedure must stop after at most m + n times of
numbering rows and columns.

Proposition 4. An alternating sequence of white and blue cells joining a defi-
cient column to a full column exists if and only if there is at least one deficient
column that is numbered.

Proof. Suppose there exists a sequence of form (10) joining deficient column
j0 to full column jk. We claim that j0 will be numbered using the above
numbering procedure. Indeed, if column j0 is not numbered row i0 cannot be
numbered either, as (i0, j0) is a white cell. Then j1 cannot be numbered either
as (i0, j1) is a blue cell, and so on. In the end, jk cannot be numbered, contrary
to the fact that full column jk was first assigned number 0.

We now turn to the froof of suffciency. Suppose that a deficient column,
say j0, is assigned number i0 ((j0, j0) is a white cell) and row i0 is assigned
number j1 �= j0, ((i0, j1) is a blue cell). Let column j1 be assigned a number not
equal to 0, for instance, i1 �= i0 ((i1, j1) is a white cell), and row i1 be assigned
number j2 �= j0, j1 ((i1, j2) is a blue cell). If column j2 is assigned a number not
equal to 0, we continue searching. As the number of columns is finite (equal to

74 A strongly polynomial-time algorithm for....

n), eventually we must determine a column jk �= jt, t = 0, 1, . . . , k−1, assigned
a 0, i.e. jk is a full column, and the required sequence is

C = {(i0, j0), (i0, j1), . . . , (ik−1, jk−1), (ik−1, jk)}, (k ≥ 1),

where (it, jt), t = 0, 1, . . . , k−1, are white cells, while (it, jt+1), t = 0, 1, . . . , k−
1, are blue cells. �

3 THE STRONGLY POLYNOMIAL - TIME

ALGORITHM FOR (P)

From the above results we are now in a position to develop an algorithm for
solving (P).

Numbering Algorithm for (P)
Step 0: Create a table consisting of m rows and n columns. Each row

corresponds to a student and each column corresponds to a subject. Make a
cell (i, j) black if aij = 0 (black cells will be not changed through the course of
solving the problem).

Step 1: Initialization. For each row i, from 1 to m, we write 1 in the non
black cells of the row from left to right until having a total of pi ones, then
we write 0 in the remaining cells of the row. As a result, we obtain an initial
feasible solution x1 = {x1

ij} of (P). The algorithm may also be started with
any feasible solution of (P). Set k = 1 and go to Step 2.

Step 2: Test for optimality. For the obtained feasible solution xk, we agree
that the cells with 1 are called blue cells, and the non black cells with 0 are
called white cells. Compute

tkj ≡ tx
k

j =
m∑

i=1

xk
ij, j = 1, 2, . . . , n, and tk ≡ tx

k

= max
1≤j≤n

tkj

Column j is said to be a full column if tkj = tk called a deficient column if
tkj ≤ tk − 2 If no deficient column exists then xk is an optimal solution of (P)
(by Proposition 1). Otherwise, perform the numbering of rows and columns as
described in Section 2. If there is no deficient column that is numbered then
xk is also optimal (by Proposition 3 and 4). In the opposite case, we must have
a sequence C of form (10) that consists of alternating white and blue cells and
joins a deficient column j0 to a full column jk (by Proposition 4). Go to Step
3.

Step 3: Solution improvement. Applying Transformation A in the sequence
C obtained in Step 2, we get a new feasible solution y which is better (ty < tk)
or has a fewer number of full columns than xk (by Proposition 2). Set xk+1 = y
and k ← k + 1, then return to Step 2.

V.V. Tuan Dung 75

Proposition 5. The above algorithm terminates after a finite number of steps.

Proof. After each improvement in Step 3, either a better feasible solution or a
solution with a fewer number of full columns than the previous one is obtained.
Since the objective function (1) of the problem can take on only a finite number
of positive integer values and since the number of columns in the problem is
also finite (equal to n), the number of steps cannot increase indefinitely. �

Complexity of the Numbering Algorithm
We now analyze the complexity of the Numbering Algorithm. In order to

bound the running time of the algorithm, we evaluate the number of arithmetic
operations needed in each step of the algorithm in the worst case.

Step 1. An initial feasible solution and the corresponding values t1j (j =
1, 2, . . . , n) can be computed in O(m× n) arithmetic operations.

Step 2. As shown in (11) - (13), the time needed to update tkj (j = 1, . . . , n)
and tk is at most O(m + n). Determining the full columns and the deficient
columns requires O(n) arithmetic operations. The numbering of rows and
columns can be performed in O(m× n) arithmetic operations. The operation
of searching for an alternating sequence C of white and blue cells joining a
deficient column to a full column is bounded by O(m+n) arithmetic operations
(using numbers assigned to the rows and columns as shown in the proof of
Proposition 4). Therefore, Step 2 requires O(m× n) arithmetic operations in
the worst case.

Step 3. The solution improvement in a sequence obtained in Step 2 is
dominated by O(m+n) arithmetic operations, because there are at most (m+n)
cells in such a sequence.

Step 2 and 3 are repeated several times. After each repetition either the
objective value or the number of full columns is reduced by one unit. Since
the objective function (1) can take on at most max

1≤j≤n
bj ≤ m integer values

and there are n columns, the number of repetitions is bounded by O(m× n).
Consequently, the algorithm requires O((m×n)(m×n)) or O(m2n2) arithmetic
operations. When m ≈ n the running time of the algorithm is O(n4). Hence,
we have established the following result.

Proposition 6. The Numbering Algorithm solves (P) in O(m2n2) arithmetic
operations.

Remark 1. This complexity result is better than the complexity of the network
flow algorithm described in [5] for the same problem (P), which is O((m +
n)2mn log2 n) if the Dinic algorithm is used and which is O((m+n)m2n2 log2 n)
if the Edmonds-Karp algorithm is used for maximum flow.

Illustrative example. Solve problem (P) whose data are as follows: m =

76 A strongly polynomial-time algorithm for....

5, n = 5, p1 = 1, p2 = 2, p3 = 1, p4 = 2, p5 = 1 and

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

Summing up the elements of A in each row and each column yields a1 =
2, a2 = 3, a3 = 2, a4 = 3, a5 = 2, b1 = 2, b2 = 3, b3 = 2, b4 = 3, b5 = 2 and p = 7.

At the completion of Step 1 of the Numbering Algorithm we obtain an
initial feasible solution of (P).

x1 =

⎛
⎜⎜⎜⎜⎝

X 1 X 0 X
1 X 1 X 0
X 1 X 0 X
1 X 1 X 0
X 1 X 0 X

⎞
⎟⎟⎟⎟⎠

2

2

2
0 1

(black cells are marked by X, the last column indicates the numbers assigned
to the rows and the last row the numbers assigned to the columns).

Step 2. Summing up the elements in each column of x1 yields

t11 = 2, t12 = 3, t13 = 2, t14 = t15 = 0 and t1 = 3.

Column 2 is full. Columns 4, 5 are deficient. Column 2 is first numbered
with a 0. We search column 2 in x1 for a 1 (blue cell) and find it in rows 1, 3,
5, so these rows are numbered with a 2 (subscript of column 2). We now search
numbered row 1 for a 0 (white cell) and find it in column 4 (not yet numbered),
so column 4 is numbered with a 1 (subscript of row 1). At this point, deficient
column 4 is numbered with a 1 (row 1), row 1 is numbered with a 2 (column
2). Column 2 is full. Thus, we obtain the sequence of cells: (1,4) - (1,2) joining
deficient column 4 to full column 2.

Step 3. Changing x1 in the sequence of cells just determined in Step 2 gives
a new feasible solution ⎛

⎜⎜⎜⎜⎝

X 0 X 1 X
1 X 1 X 0
X 1 X 0 X
1 X 1 X 0
X 1 X 0 X

⎞
⎟⎟⎟⎟⎠

1
2
1
2

0 0 0 2

First return to Step 2. Summing up the elements in each column of x2

yields
t21 = t22 = t23 = 2, t24 = 1, t25 = 0 and t2 = 2

V.V. Tuan Dung 77

Columns 1, 2, 3 are full. Column 5 is deficient. The numbering procedure
now gives the sequence of cells: (2,5) - (2,1) joining deficient column 5 to full
column 1.

Step 3. Changing x2 in this new sequence of cells gives a new feasible
solution

x3 =

⎛
⎜⎜⎜⎜⎝

X 0 X 1 X
0 X 1 X 1
X 1 X 0 X
1 X 1 X 0
X 1 X 0 X

⎞
⎟⎟⎟⎟⎠

Second return to Step 2. Summing up the elements in each column of x3

yields
t31 = 1, t32 = t33 = 2, t34 = t35 = 1 and t3 = 2

Now columns 2 and 3 are full, but there is no deficient column, so x3 (with
x replaced by 0) is an optimal solution of (P). The optimal function value is
t∗ = t3 = 2.

Remark 2. It can easily be verified that one of the optimal continuous solutions
of (P) without integer restriction is

xopt =

⎛
⎜⎜⎜⎜⎝

0 1
2

0 1
2

0
2
3

0 2
3

0 2
3

0 1
2

0 1
2

0
2
3

0 2
3

0 2
3

0 1
2

0 1
2

0

⎞
⎟⎟⎟⎟⎠

with the optimal value fopt = 3
2

< t∗ = 2. Our example therefore shows an
instance featuring a strict integrality gap.

Remark 3. The proposed algorithm can also be applied to the case where the
aij values are arbitrary nonnegative integers. But one question still unanswered
is whether the algorithm remains strongly polynomial in this case. To answer
this question it requires further modifications and investigations.

Problem (P) with more general objective function (e.g. the pointwise maxi-
mum of some increasing functions) will be studied in a subsequent paper.

ACKNOWLEDGMENT
The authors would like to thank Prof. Tran Vu Thieu for his helpful comm-

nets and suggestions.

References
[1] R.K. Ahuja, T.L . Magnanti and J.B. Orlin. Network Flows: Theory,

Algorithms and Applications. Prentice Hall, N.J., 1993.

78 A strongly polynomial-time algorithm for....

[2] S.Khuller, Y.J. Sussman, W. Gasarch. Advanced Algorithms. Lectures
CMSC 858K, Jan 30 - May - 13, 1997.

[3] M.Minoux. A polynomial algorithm for minimum quadratic cost flow prob-
lems. European J. Oper. Res., 18 (1984), 377- 387.

[4] M. Minoux. Solving integer minimum cost flow with separable convex cost
objective polynomially. Math. Proc. Study 26 (1986), 237 - 239.

[5] N.D. Nghia and V.V.T. Dung. A polynomial-time algorithm for solving a
class of discrete optimization problems, Journal of Computer Science and
Cybernetics, Vol. 15, 1(1999), 8 - 13 (in Vietnamese).

[6] N.H. Xuong. Mathematiques Discretes et Informatiques. Masson, Paris
1992.

