SOME REMARKS ON R_{e}-MULTIPLICATION MODULES OVER FIRST STRONGLY GRADED RINGS

Rashid Abu-Dawwas* and Mashhoor Refai ${ }^{\dagger}$
* Department of Mathematics
Yarmouk University, Irbid, Jordan
e-mail: rrashid@yu.edu.jo
${ }^{\dagger}$ President Office
Princess Sumaya University for Technology, Amman, Jordan e-mail: m.refai@psut.edu.jo

Abstract

Let G be a group, R be a first strongly G - graded ring and M be a G - graded R - module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. In this paper, we introduce several results concerning the $R_{e}-\operatorname{modules}\left\{M_{g}: g \in \operatorname{supp}(R, G)\right\}$.

Introduction

Let R be a commutative ring with unity 1 and M be a left R - module. If N is an R - submodule of M, then the ideal $\{r \in R: r M \subseteq N\}$ of R will be denoted by $\left(N:_{R} M\right)$. A left R - module M is called multiplication R module if for every R - submodule N of $M, N=I M$ for some ideal I of R. In this case, we can take $I=\left(N:_{R} M\right)$. Let P be a maximal ideal of R. Then we define $T_{P}(M)=\{m \in M:(1-p) m=0$ for some $p \in P\}$. Clearly, $T_{P}(M)$ is an R - submodule of M. We say that M is P - cyclic if there exist $p \in P$ and $m \in M$ such that $(1-p) M \subseteq R m$. Moreover, M is multiplication R - module if and only if $M=T_{P}(M)$ or M is P - cyclic for every maximal ideal P of R. For more details, one can look in $[1,2,3]$. A commutative ring R with unity is a G - graded ring if there exist additive subgroups R_{g} of R indexed by the elements $g \in G$ such that $R=\bigoplus_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. We
denote this by (R, G) and we consider $\operatorname{supp}(R, G)=\left\{g \in G: R_{g} \neq 0\right\}$. The elements of R_{g} are called homogeneous of degree g. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_{g}$, where x_{g} is the component of x in R_{g}. Moreover, R_{e} is a subring of R and $1 \in R_{e}$. Let M be a left R - module. Then M is a G - graded R - module (in short, M is gr - R - module) if there exist additive subgroups M_{g} of M indexed by the elements $g \in G$ such that $M=\bigoplus_{g \in G} M_{g}$ and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$. We denote this by (M, G) and we consider $\operatorname{supp}(M, G)=\left\{g \in G: M_{g} \neq 0\right\}$. The elements of M_{g} are called homogeneous of degree g. If $x \in M$, then x can be written uniquely as $\sum_{g \in G} x_{g}$, where x_{g} is the component of x in M_{g}. Clearly, M_{g} is R_{e} - submodule of M for all $g \in G$. For more details, one can look in $[4,5]$.

$1 \quad R_{e}$-Multiplication Modules over First Strongly Graded Rings

In this section, we introduce several results concerning the R_{e} - modules $\left\{M_{g}: g \in \operatorname{supp}(R, G)\right\}$ under the assumption that (R, G) is first strong and M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module.
Definition 1.1. [5] (R, G) is called first strong if $1 \in R_{g} R_{g^{-1}}$ for all $g \in \operatorname{supp}(R, G)$.
Proposition 1.2. [5] Let R be a G-graded ring. Then (R, G) is first strong if and only if $\operatorname{supp}(R, G)$ is a subgroup of G and $R_{g} R_{h}=R_{g h}$ for all $g, h \in \operatorname{supp}(R, G)$.
Definition 1.3. [5] (M, G) is called first strong if $\operatorname{supp}(R, G)$ is a subgroup of G and $R_{g} M_{h}=M_{g h}$ for all $g \in \operatorname{supp}(R, G), h \in G$.

Proposition 1.4. [5] Let R be a G-graded ring. Then (R, G) is first strong if and only if every $g r-R$ - module is first strongly graded.

Now, we introduce our results.
Proposition 1.5. Let R be a first strongly G - graded ring and M be a gr - R module. Then M_{e} is R_{e} - multiplication if and only if M_{g} is R_{e} - multiplication for all $g \in \operatorname{supp}(R, G)$.

Proof Suppose M_{e} is R_{e} - multiplication. Let $g \in \operatorname{supp}(R, G)$ and let N be an R_{e} - submodule of M_{g}. Then $R_{g^{-1}} N$ is an R_{e} - submodule of M_{e}. Since M_{e} is R_{e} - multiplication, $R_{g^{-1}} N=I M_{e}$ for some ideal I of R_{e} and then $N=R_{e} N=R_{g} R_{g^{-1}} N=R_{g} I M_{e}=I R_{g} M_{e}=I M_{g}$. Hence M_{g} is $R_{e^{-}}$ multiplication. The converse is obvious.

Lemma 1.6. Let R be a first strongly G - graded ring and M be a gr - R module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. If A is a proper ideal of R_{e}, then $A M_{g} \neq M_{g}$ for all $g \in \operatorname{supp}(R, G)$.

Proof Let $g \in \operatorname{supp}(R, G)$. Suppose $A M_{g}=M_{g}$. Then for $m \in M_{e}, R_{e} m=$ $I M_{e}$ for some ideal I of R_{e} since M_{e} is R_{e} - multiplication. Now, $R_{e} m=$ $I M_{e}=I R_{g^{-1}} M_{g}=I R_{g^{-1}} A M_{g}=I A R_{g^{-1}} M_{g}=I A M_{e}=A I M_{e}=A R_{e} m=$ $R_{e} A m=A m$. So, $m=a m$ for some $a \in A$ and then $(1-a) m=0$ and since M_{e} is R_{e} - torsion free, $1=a \in A$ a contradiction. Hence, $A M_{g} \neq M_{g}$.

Proposition 1.7. Let R be a first strongly G - graded ring and M be a gr - R module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. If A and B are two ideals of R_{e} and $g \in \operatorname{supp}(R, G)$ such that $A M_{g} \subseteq B M_{g}$, then $A \subseteq B$.

Proof Let $a \in A$ and let $X=\left\{r \in R_{e}: r a \in B\right\}$. Then X is an ideal of R_{e}. It is enough to prove that $X=R_{e}$. Suppose $X \neq R_{e}$. Then there exists a maximal ideal P of R_{e} such that $X \subseteq P$. By Lemma 1.6, $P M_{e} \neq M_{e}$ and then there exists $m \in M_{e}$ such that $m \notin P M_{e}$. Since M_{e} is R_{e} - multiplication, $R_{e} m=I M_{e}$ for some ideal I of R_{e}. If $I \subseteq P$, then $m \in R_{e} m=I M_{e} \subseteq P M_{e}$ a contradiction. So, $I \nsubseteq P$ and then $I+P=R_{e}$ and hence $1=\alpha+p$ for some $\alpha \in I, p \in P$. Now, $(1-p) a m \in(1-p) A M_{e}=(1-p) A R_{g^{-1}} M_{g}=$ $(1-p) R_{g^{-1}} A M_{g} \subseteq(1-p) R_{g^{-1}} B M_{g}=(1-p) B R_{g^{-1}} M_{g}=(1-p) B M_{e}=$ $B(1-p) M_{e}=B \alpha M_{e} \subseteq B I M_{e}=B R_{e} m=R_{e} B m=B m$. So, $(1-p) a m=b m$ for some $b \in B$ and then $((1-p) a-b) m=0$. Since M_{e} is R_{e} - torsion free, $(1-p) a=b \in B$ and then $1-p \in X \subseteq P$ a contradiction. Hence, $X=R_{e}$ and then $a \in B$.

Proposition 1.8. Let R be a first strongly G - graded ring and M be a gr-Rmodule such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. If R_{e} is Noetherian, then M_{g} is $R_{e}-$ Noetherian for all $g \in \operatorname{supp}(R, G)$.

Proof Let $g \in \operatorname{supp}(R, G)$ and let $N_{1} \subseteq N_{2} \subseteq \cdots$ be a chain of R_{e} - submodules of M_{g}. By Proposition 1.5, M_{g} is R_{e} - multiplication and then $N_{k}=I_{k} M_{e}$ for some ideal I_{k} of $R_{e}, k=1,2, \cdots$. So, $I_{1} M_{e} \subseteq I_{2} M_{e} \subseteq \cdots$ and then by Proposition 1.7, $I_{1} \subseteq I_{2} \subseteq \cdots$. Since R_{e} is Noetherian, there exists $m \in \mathbb{N}$ such that $I_{n}=I_{m}$ for all $n \geq m$ and then $I_{n} M_{e}=I_{m} M_{e}$ for all $n \geq m$ and hence $N_{n}=N_{m}$ for all $n \geq m$. Therefore, M_{g} is R_{e}-Noetherian.

Proposition 1.9. Let R be a first strongly G - graded ring and M be a gr - R module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. If M_{g} is R_{e} - Noetherian for some $g \in \operatorname{supp}(R, G)$, then R_{e} is Noetherian.

Proof Suppose $g \in \operatorname{supp}(R, G)$ such that M_{g} is R_{e} - Noetherian. Let $I_{1} \subseteq$ $I_{2} \subseteq \cdots$ be a chain of ideals of R_{e}. Then $I_{1} M_{g} \subseteq I_{2} M_{g} \subseteq \cdots$ is a chain of
R_{e} - submodules of M_{g}. Since M_{g} is R_{e} - Noetherian, there exists $m \in \mathbb{N}$ such that $I_{n} M_{g}=I_{m} M_{g}$ for all $n \geq m$. By Proposition 1.7, $I_{n}=I_{m}$ for all $n \geq m$. Hence, R_{e} is Noetherian.

Proposition 1.10. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. Then R_{e} is Noetherian if and only if M_{g} is R_{e} - Noetherian for all $g \in \operatorname{supp}(R, G)$.

Proposition 1.11. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. Then
$\left(I M_{g}:_{R_{e}} M_{g}\right)=I$ for every ideal I of R_{e} and $g \in \operatorname{supp}(R, G)$.

Proof Let I be an ideal of R_{e} and $g \in \operatorname{supp}(R, G)$. Clearly, $I \subseteq\left(I M_{g}:_{R_{e}} M_{g}\right)$. Let $r \in\left(I M_{g}:_{R_{e}} M_{g}\right)$. Then $r M_{g} \subseteq I M_{g}$ and then $\langle r\rangle$ is an ideal of R_{e} with $\langle r\rangle M_{g} \subseteq I M_{g}$. By Proposition 1.7, $\langle r\rangle \subseteq I$ and then $r \in I$, i.e., $\left(I M_{g}:_{R_{e}}\right.$ $\left.M_{g}\right) \subseteq I$ and hence $\left(I M_{g}:_{R_{e}} M_{g}\right)=I$.

A nonzero R - module M is called faithful if $r M \neq 0$ for all nonzero $r \in R$.
Proposition 1.12. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. Suppose for $g \in \operatorname{supp}(R, G), M_{g}$ is $R_{e}-$ faithful. Then M_{g} is finitely generated.

Proof Suppose M_{g} is not finitely generated. Then by [1, Theorem 3.1], there exists a maximal ideal A of R_{e} such that $M_{g}=A M_{g}$. By Proposition 1.5, M_{g} is R_{e} - multiplication and then by [1, Theorem 2.5], there exists a maximal R_{e} - submodule N of M_{g} such that $N=B M_{g}$ for some maximal ideal B of R_{e}. Now, $N=B M_{g}=B A M_{g}=A B M_{g}=A N \subseteq A M_{g}$. By Proposition 1.7, $B=A B \subseteq A$. Since A and B are maximal, $A=B$ and then $M_{g}=A M_{g}=$ $B M_{g}=N$ a contradiction. Hence, M_{g} is finitely generated.

For $g \in G$, define $Z\left(M_{g}\right)=\left\{r \in R_{e}: r m=0\right.$ for some nonzero $\left.m \in M_{g}\right\}$.
Proposition 1.13. Let R be a G-graded ring and M be a gr-R-module such that M_{e} is R_{e}-faithful multiplication module. Suppose for $g \in \operatorname{supp}(R, G), M_{g}$ is R_{e} - faithful. Then $Z\left(M_{g}\right)=Z\left(R_{e}\right)$.

Proof Let $r \in Z\left(R_{e}\right)$. Then there exists a nonzero $s \in R_{e}$ such that $r s=0$. Since M_{g} is R_{e} - faithful, $s M_{g} \neq 0$ and $r\left(s M_{g}\right)=0$ and then $r \in Z\left(M_{g}\right)$,
i.e., $Z\left(R_{e}\right) \subseteq Z\left(M_{g}\right)$. Let $t \in Z\left(M_{g}\right)$. Then there exists a nonzero $m \in M_{g}$ such that $t m=0$. Now, $R_{g^{-1}} m$ is an R_{e} - submodule of M_{e} and M_{e} is R_{e} - multiplication, then $R_{g^{-1}} m=I M_{e}$ for some ideal I of R_{e}. But $t I M_{e}=$ $t R_{g^{-1}} m=R_{g^{-1}} t m=0$, so $t I=0$ since M_{e} is R_{e} - faithful. Since $I M_{e} \neq 0$, we have $I \neq 0$ and then $t \in Z\left(R_{e}\right)$, i.e., $Z\left(M_{g}\right) \subseteq Z\left(R_{e}\right)$. Hence $Z\left(M_{g}\right)=Z\left(R_{e}\right)$.

An R - submodule N of M is called prime R - submodule if whenever $r \in R$ and $m \in M$ such that $r m \in N$, then either $r M \subseteq N$ or $m \in N$.

Proposition 1.14. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_{e} is a nonzero R_{e} - torsion free R_{e} - multiplication module. If P is a prime ideal of R_{e}, then $P M_{g}$ is a prime R_{e} - submodule of M_{g} for all $g \in \operatorname{supp}(R, G)$.

Proof Firstly, we prove that $P M_{e}$ is a prime R_{e} - submodule of M_{e}. Let $a \in R_{e}$ and $x \in M_{e}$ such that $a x \in P M_{e}$. If $a \in P$, then $a M_{e} \subseteq P M_{e}$ and then it is done. Suppose $a \notin P$. let $X=\left\{r \in R_{e}: r x \in P M_{e}\right\}$. Then X is an ideal of R_{e}. Suppose $X \neq R_{e}$. Then there exists a maximal ideal Q of R_{e} such that $X \subseteq Q$. Since M_{e} is R_{e} - multiplication, either $T_{Q}\left(M_{e}\right)=M_{e}$ or M_{e} is Q - cyclic. If $T_{Q}\left(M_{e}\right)=M_{e}$, then there exists $q \in Q$ with $(1-q) x=0$ and then $1-q \in X \subseteq Q$ a contradiction. So, M_{e} is Q - cyclic that is there exist $m \in M_{e}$ and $q \in Q$ with $(1-q) M_{e} \subseteq R_{e} m$. Hence
$(1-q) P M_{e}=P(1-q) M_{e} \subseteq P R_{e} m=R_{e} P m \subseteq P m$. Now, $(1-q) x=s m$ for some $s \in R_{e}$ and $(1-q) a x=p m$ for some $p \in P$. Thus asm $=a(1-q) x=$ $(1-q) a x=p m$ and then $(a s-p) m=0$. Since M_{e} is R_{e} torsion free, as $=p$. Then $(1-q)$ as $=(1-q) p \in P$. Since P is prime, either $(1-q) \in P$ or as $\in P$. But $P \subseteq X \subseteq Q$, so $(1-q) \notin P$ and then $a s \in P$. Since P is prime and $p \notin P, s \in P$. Thus $(1-q) x=s m \in P m \subseteq P M_{e}$ and then $(1-q) \in X \subseteq Q$ a contradiction. Hence $X=R_{e}$ and then $x \in P M_{e}$. So, $P M_{e}$ is a prime R_{e} - submodule of M_{e}. Let $g \in \operatorname{supp}(R, G), r \in R_{e}$ and $m \in M_{g}$ such that $r m \in P M_{g}$. Then $r R_{g^{-1}} m=R_{g^{-1}} r m \in R_{g^{-1}} P M_{g}=P R_{g^{-1}} M_{g}=P M_{e}$. Since $P M_{e}$ is prime, either $r M_{e} \subseteq P M_{e}$ or $R_{g^{-1}} m \in P M_{e}$. If $r M_{e} \subseteq P M_{e}$, then
$r M_{g}=r R_{g} M_{e}=R_{g} r M_{e} \subseteq R_{g} P M_{e}=P R_{g} M_{e}=P M_{g}$. If $R_{g^{-1} m} \in P M_{e}$, then
$m \in R_{e} m=R_{g} R_{g^{-1}} m \subseteq R_{g} P M_{e}=P R_{g} M_{e}=P M_{g}$. Hence $P M_{g}$ is a prime R_{e} - submodule of M_{g}.

References

[1] Z. Abd El-Bast and P. F. Smith, Multiplication Modules, Comm. Algebra, 16 (4) (1988), $755-779$.
[2] Z. Abd El-Bast and P. F. Smith, Multiplication Modules and Theorems of Mori and Mott, Comm. Algebra, 16 (4) (1988), 781 - 796.
[3] D. S. Lee and H. B. Lee, Some Remarks on Faithful Multiplication Modules, Journal of the Chungcheong Mathematical Society, 6 (1993), 131 - 137.
[4] C. Nastasescu and F. Van Oystaeyen, "Graded Ring Theory", Mathematical Library 28, North Holland, Amesterdam, 1982.
[5] M. Refai, Various types of strongly graded rings, Abhath Al-Yarmouk Journal (Pure Sciences and Engineering Series), 4 (2) (1995), 9 - 19.

