Some Remarks on R_e -Multiplication Modules over first strongly GRADED RINGS

Rashid Abu-Dawwas^{*} and Mashhoor Refai[†]

*Department of Mathematics Yarmouk University, Irbid, Jordan e-mail: rrashid@yu.edu.jo

[†]President Office Princess Sumaya University for Technology, Amman, Jordan e-mail: m.refai@psut.edu.jo

Abstract

Let G be a group, R be a first strongly G - graded ring and M be a G - graded R - module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. In this paper, we introduce several results concerning the R_e - modules $\{M_g : g \in \text{supp}(R, G)\}$.

Introduction

Let R be a commutative ring with unity 1 and M be a left R - module. If N is an R - submodule of M, then the ideal $\{r \in R : rM \subseteq N\}$ of R will be denoted by $(N :_R M)$. A left R - module M is called multiplication R module if for every R - submodule N of M, N = IM for some ideal I of R. In this case, we can take $I = (N :_R M)$. Let P be a maximal ideal of R. Then we define $T_P(M) = \{m \in M : (1 - p)m = 0 \text{ for some } p \in P\}$. Clearly, $T_P(M)$ is an R - submodule of M. We say that M is P - cyclic if there exist $p \in P$ and $m \in M$ such that $(1 - p)M \subseteq Rm$. Moreover, M is multiplication R - module if and only if $M = T_P(M)$ or M is P - cyclic for every maximal ideal P of R. For more details, one can look in [1, 2, 3]. A commutative ring R with unity is a G - graded ring if there exist additive subgroups R_g of R indexed by the elements $g \in G$ such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. We

Key words: Graded rings, Graded modules, Multiplication modules. 2000 AMS Mathematics Subject Classification: 13A02

denote this by (R, G) and we consider $\operatorname{supp}(R, G) = \{g \in G : R_g \neq 0\}$. The elements of R_g are called homogeneous of degree g. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of x in R_g . Moreover, R_e is a subring of R and $1 \in R_e$. Let M be a left R - module. Then M is a G - graded R - module (in short, M is gr - R - module) if there exist additive subgroups M_g of M indexed by the elements $g \in G$ such that $M = \bigoplus_{g \in G} M_g$ and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. We denote this by (M, G) and we consider $\operatorname{supp}(M, G) = \{g \in G : M_g \neq 0\}$. The elements of M_g are called homogeneous of degree g. If $x \in M$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of x in M_g . Clearly, M_g is R_e - submodule of M for all $g \in G$. For more details, one can look in [4, 5].

$\begin{array}{cc} 1 & R_e \text{-Multiplication Modules over First Strongly} \\ & \text{Graded Rings} \end{array} \end{array}$

In this section, we introduce several results concerning the R_e - modules $\{M_g : g \in \text{supp}(R, G)\}$ under the assumption that (R, G) is first strong and M_e is a nonzero R_e - torsion free R_e - multiplication module.

Definition 1.1. [5] (R, G) is called first strong if $1 \in R_g R_{g^{-1}}$ for all $g \in \text{supp}(R, G)$.

Proposition 1.2. [5] Let R be a G - graded ring. Then (R, G) is first strong if and only if supp(R, G) is a subgroup of G and $R_qR_h = R_{qh}$ for all $g, h \in supp(R, G)$.

Definition 1.3. [5] (M, G) is called first strong if supp(R, G) is a subgroup of G and $R_qM_h = M_{qh}$ for all $g \in supp(R, G)$, $h \in G$.

Proposition 1.4. [5] Let R be a G - graded ring. Then (R, G) is first strong if and only if every gr - R - module is first strongly graded.

Now, we introduce our results.

Proposition 1.5. Let R be a first strongly G - graded ring and M be a gr - R - module. Then M_e is R_e - multiplication if and only if M_g is R_e - multiplication for all $g \in supp(R, G)$.

Proof Suppose M_e is R_e - multiplication. Let $g \in \text{supp}(R, G)$ and let N be an R_e - submodule of M_g . Then $R_{g^{-1}}N$ is an R_e - submodule of M_e . Since M_e is R_e - multiplication, $R_{g^{-1}}N = IM_e$ for some ideal I of R_e and then $N = R_e N = R_g R_{g^{-1}}N = R_g IM_e = IR_g M_e = IM_g$. Hence M_g is R_e -multiplication. The converse is obvious.

Lemma 1.6. Let R be a first strongly G - graded ring and M be a gr - R module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. If A is a proper ideal of R_e , then $AM_q \neq M_q$ for all $g \in supp(R, G)$. **Proof** Let $g \in \operatorname{supp}(R, G)$. Suppose $AM_g = M_g$. Then for $m \in M_e$, $R_em = IM_e$ for some ideal I of R_e since M_e is R_e - multiplication. Now, $R_em = IM_e = IR_{g^{-1}}M_g = IR_{g^{-1}}AM_g = IAR_{g^{-1}}M_g = IAM_e = AIM_e = AR_em = R_eAm = Am$. So, m = am for some $a \in A$ and then (1 - a)m = 0 and since M_e is R_e - torsion free, $1 = a \in A$ a contradiction. Hence, $AM_g \neq M_g$.

Proposition 1.7. Let R be a first strongly G - graded ring and M be a gr - R module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. If A and B are two ideals of R_e and $g \in supp(R, G)$ such that $AM_g \subseteq BM_g$, then $A \subseteq B$.

Proof Let $a \in A$ and let $X = \{r \in R_e : ra \in B\}$. Then X is an ideal of R_e . It is enough to prove that $X = R_e$. Suppose $X \neq R_e$. Then there exists a maximal ideal P of R_e such that $X \subseteq P$. By Lemma 1.6, $PM_e \neq M_e$ and then there exists $m \in M_e$ such that $m \notin PM_e$. Since M_e is R_e - multiplication, $R_em = IM_e$ for some ideal I of R_e . If $I \subseteq P$, then $m \in R_em = IM_e \subseteq PM_e$ a contradiction. So, $I \notin P$ and then $I + P = R_e$ and hence $1 = \alpha + p$ for some $\alpha \in I$, $p \in P$. Now, $(1 - p)am \in (1 - p)AM_e = (1 - p)AR_{g^{-1}}M_g = (1 - p)R_{g^{-1}}AM_g \subseteq (1 - p)R_{g^{-1}}BM_g = (1 - p)BR_{g^{-1}}M_g = (1 - p)BM_e = B(1 - p)M_e = B\alpha M_e \subseteq BIM_e = BR_em = R_eBm = Bm$. So, (1 - p)am = bm for some $b \in B$ and then ((1 - p)a - b)m = 0. Since M_e is R_e - torsion free, $(1 - p)a = b \in B$ and then $1 - p \in X \subseteq P$ a contradiction. Hence, $X = R_e$ and then $a \in B$.

Proposition 1.8. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. If R_e is Noetherian, then M_q is R_e - Noetherian for all $g \in supp(R, G)$.

Proof Let $g \in \operatorname{supp}(R, G)$ and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of R_e -submodules of M_g . By Proposition 1.5, M_g is R_e -multiplication and then $N_k = I_k M_e$ for some ideal I_k of R_e , $k = 1, 2, \cdots$. So, $I_1 M_e \subseteq I_2 M_e \subseteq \cdots$ and then by Proposition 1.7, $I_1 \subseteq I_2 \subseteq \cdots$. Since R_e is Noetherian, there exists $m \in \mathbb{N}$ such that $I_n = I_m$ for all $n \geq m$ and then $I_n M_e = I_m M_e$ for all $n \geq m$ and hence $N_n = N_m$ for all $n \geq m$. Therefore, M_g is R_e -Noetherian.

Proposition 1.9. Let R be a first strongly G - graded ring and M be a gr - R module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. If M_g is R_e - Noetherian for some $g \in supp(R, G)$, then R_e is Noetherian.

Proof Suppose $g \in \text{supp}(R, G)$ such that M_g is R_e - Noetherian. Let $I_1 \subseteq I_2 \subseteq \cdots$ be a chain of ideals of R_e . Then $I_1 M_g \subseteq I_2 M_g \subseteq \cdots$ is a chain of

 R_e - submodules of M_g . Since M_g is R_e - Noetherian, there exists $m \in \mathbb{N}$ such that $I_n M_g = I_m M_g$ for all $n \ge m$. By Proposition 1.7, $I_n = I_m$ for all $n \ge m$. Hence, R_e is Noetherian.

Proposition 1.10. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. Then R_e is Noetherian if and only if M_g is R_e - Noetherian for all $g \in supp(R, G)$.

Proposition 1.11. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. Then

 $(IM_g :_{R_e} M_g) = I$ for every ideal I of R_e and $g \in supp(R, G)$.

Proof Let *I* be an ideal of R_e and $g \in \operatorname{supp}(R, G)$. Clearly, $I \subseteq (IM_g :_{R_e} M_g)$. Let $r \in (IM_g :_{R_e} M_g)$. Then $rM_g \subseteq IM_g$ and then $\langle r \rangle$ is an ideal of R_e with $\langle r \rangle M_g \subseteq IM_g$. By Proposition 1.7, $\langle r \rangle \subseteq I$ and then $r \in I$, i.e., $(IM_g :_{R_e} M_g) \subseteq I$ and hence $(IM_g :_{R_e} M_g) = I$.

A nonzero R - module M is called faithful if $rM \neq 0$ for all nonzero $r \in R$.

Proposition 1.12. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. Suppose for $g \in supp(R, G)$, M_g is R_e - faithful. Then M_g is finitely generated.

Proof Suppose M_g is not finitely generated. Then by [1, Theorem 3.1], there exists a maximal ideal A of R_e such that $M_g = AM_g$. By Proposition 1.5, M_g is R_e - multiplication and then by [1, Theorem 2.5], there exists a maximal R_e - submodule N of M_g such that $N = BM_g$ for some maximal ideal B of R_e . Now, $N = BM_g = BAM_g = ABM_g = AN \subseteq AM_g$. By Proposition 1.7, $B = AB \subseteq A$. Since A and B are maximal, A = B and then $M_g = AM_g = BM_g = BM_g = N$ a contradiction. Hence, M_g is finitely generated. \Box

For $g \in G$, define $Z(M_q) = \{r \in R_e : rm = 0 \text{ for some nonzero } m \in M_q\}$.

Proposition 1.13. Let R be a G - graded ring and M be a gr - R - module such that M_e is R_e - faithful multiplication module. Suppose for $g \in supp(R,G)$, M_g is R_e - faithful. Then $Z(M_g) = Z(R_e)$.

Proof Let $r \in Z(R_e)$. Then there exists a nonzero $s \in R_e$ such that rs = 0. Since M_g is R_e - faithful, $sM_g \neq 0$ and $r(sM_g) = 0$ and then $r \in Z(M_g)$, i.e., $Z(R_e) \subseteq Z(M_g)$. Let $t \in Z(M_g)$. Then there exists a nonzero $m \in M_g$ such that tm = 0. Now, $R_{g^{-1}}m$ is an R_e - submodule of M_e and M_e is R_e - multiplication, then $R_{g^{-1}}m = IM_e$ for some ideal I of R_e . But $tIM_e = tR_{g^{-1}}m = R_{g^{-1}}tm = 0$, so tI = 0 since M_e is R_e - faithful. Since $IM_e \neq 0$, we have $I \neq 0$ and then $t \in Z(R_e)$, i.e., $Z(M_g) \subseteq Z(R_e)$. Hence $Z(M_g) = Z(R_e)$. \Box

An R - submodule N of M is called prime R - submodule if whenever $r \in R$ and $m \in M$ such that $rm \in N$, then either $rM \subseteq N$ or $m \in N$.

Proposition 1.14. Let R be a first strongly G - graded ring and M be a gr - R - module such that M_e is a nonzero R_e - torsion free R_e - multiplication module. If P is a prime ideal of R_e , then PM_g is a prime R_e - submodule of M_q for all $g \in supp(R, G)$.

Proof Firstly, we prove that PM_e is a prime R_e - submodule of M_e . Let $a \in R_e$ and $x \in M_e$ such that $ax \in PM_e$. If $a \in P$, then $aM_e \subseteq PM_e$ and then it is done. Suppose $a \notin P$. let $X = \{r \in R_e : rx \in PM_e\}$. Then X is an ideal of R_e . Suppose $X \neq R_e$. Then there exists a maximal ideal Q of R_e such that $X \subseteq Q$. Since M_e is R_e - multiplication, either $T_Q(M_e) = M_e$ or M_e is Q - cyclic. If $T_Q(M_e) = M_e$, then there exists $q \in Q$ with (1 - q)x = 0 and then $1 - q \in X \subseteq Q$ a contradiction. So, M_e is Q - cyclic that is there exist $m \in M_e$ and $q \in Q$ with $(1 - q)M_e \subseteq R_em$. Hence

 $(1-q)PM_e = P(1-q)M_e \subseteq PR_em = R_ePm \subseteq Pm.$ Now, (1-q)x = sm for some $s \in R_e$ and (1-q)ax = pm for some $p \in P$. Thus asm = a(1-q)x =(1-q)ax = pm and then (as - p)m = 0. Since M_e is R_e torsion free, as = p. Then $(1-q)as = (1-q)p \in P$. Since P is prime, either $(1-q) \in P$ or $as \in P$. But $P \subseteq X \subseteq Q$, so $(1-q) \notin P$ and then $as \in P$. Since P is prime and $p \notin P, s \in P$. Thus $(1-q)x = sm \in Pm \subseteq PM_e$ and then $(1-q) \in X \subseteq Q$ a contradiction. Hence $X = R_e$ and then $x \in PM_e$. So, PM_e is a prime R_e - submodule of M_e . Let $g \in \text{supp}(R,G), r \in R_e$ and $m \in M_g$ such that $rm \in PM_g$. Then $rR_{g^{-1}}m = R_{g^{-1}}rm \in R_{g^{-1}}PM_g = PR_{g^{-1}}M_g = PM_e$. Since PM_e is prime, either $rM_e \subseteq PM_e$ or $R_{g^{-1}}m \in PM_e$. If $rM_e \subseteq PM_e$, then

 $rM_g=rR_gM_e=R_grM_e\subseteq R_gPM_e=PR_gM_e=PM_g.$ If $R_{g^{-1}}m\in PM_e,$ then

 $m \in R_e m = R_g R_{g^{-1}} m \subseteq R_g P M_e = P R_g M_e = P M_g$. Hence $P M_g$ is a prime R_e - submodule of M_q .

References

- Z. Abd El-Bast and P. F. Smith, *Multiplication Modules*, Comm. Algebra, 16 (4) (1988), 755 - 779.
- [2] Z. Abd El-Bast and P. F. Smith, Multiplication Modules and Theorems of Mori and Mott, Comm. Algebra, 16 (4) (1988), 781 – 796.
- [3] D. S. Lee and H. B. Lee, Some Remarks on Faithful Multiplication Modules, Journal of the Chungcheong Mathematical Society, 6 (1993), 131 – 137.
- [4] C. Nastasescu and F. Van Oystaeyen, "Graded Ring Theory", Mathematical Library 28, North Holland, Amesterdam, 1982.
- [5] M. Refai, Various types of strongly graded rings, Abhath Al-Yarmouk Journal (Pure Sciences and Engineering Series), 4 (2) (1995), 9-19.