A NOTE ON WEAK LIFTING MODULES

Gökhan Bilhan* and Tuğba Güroğlu

*Dept. of Mathematics, Faculty of Arts and Sciences Dokuz Eylül University, Tinaztepe Y. Buca, Izmir, Turkey. e-mail: gokhan.bilhan@deu.edu.tr

[†] Dept. of Mathematics, Faculty of Arts and Sciences Celal Bayar University, Muradiye Y. Manisa, Turkey. e-mail: tugba.guroglu@deu.edu.tr

Abstract

It is proved that the notions weak lifting and weak \oplus -supplemented are same notions.

1 Introduction

Throughout the paper all rings have identity and all modules are unitary. In [3] and [4], authors defined weak lifting modules: A module M is said to be a *weak lifting*, if for each semisimple submodule N of M, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $M_2 \cap N \ll M_2$. In both papers, they have posed many results but some of these results are actually redundant.

In [3], it is defined that a module M is called *weak* \oplus -supplemented, if for each semisimple submodule N of M, there exists a direct summand K of M such that M = N + K and $N \cap K \ll K$.

Authors considered these two definitions in different manners, however these notions are the same notions.

Lemma 1.1. Let N and L be two submodules of M so that M = N + L, also let N be semisimple, then $M = X \oplus L$ for some semisimple submodule X of N.

Proof Obviously, $N \cap L$ is a direct summand of N, because N is semisimple. So, $N = (N \cap L) \oplus A$ for some submodule A of N. Then $M = [(N \cap L) \oplus A] + L = A + L$ but $A \cap L = (N \cap L) \cap A = 0$. So, $M = A \oplus L$.

Key words: weak lifting modules.

2000 AMS Mathematics Subject Classification: primary 16D10 ; secondary 16D99.

Theorem 1.2. For an *R*-module *M*, the following statements are equivalent:

- 1. Every semisimple submodule of M has a supplement.
- 2. M is weak \oplus -supplemented.
- 3. M is weak lifting.

Proof $(1 \Rightarrow 2)$ Let N be a semisimple submodule of M. By assumption, N has a supplement L in M such that M = N + L and $N \cap L \ll L$. By Lemma 1.1, L is a direct summand of M.

 $(2 \Rightarrow 3)$ Let M be weak- \oplus -supplemented module and N be a semisimple submodule of M. Then N has a direct summand supplement L in M, i.e., $M = N + L = L \oplus L'$ and $N \cap L \ll L$ for some submodule L' of M. By Lemma 1.1, $M = X \oplus L$ where $X \leq N$ and we already have $L \cap N \ll L$. Hence M is weak lifting.

 $(3 \Rightarrow 1)$ Let N be a semisimple submodule of M. By assumption, there exists a decomposition K of M such that $M = K \oplus K'$, $K \leq N$ and $N \cap K' \ll K'$ for some submodule K' of M. Then M = N + K'.

The following result is proved in ([3], Lemma 2.4) by help of an extra property, namely (D_3) property, however (D_3) property is not necessary. We shall give the definition of (D_3) property for completeness:

A module M is said to have (D_3) property, if whenever M_1 and M_2 are direct summands in M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M.

Proposition 1.3. Any direct summand of a weak lifting module is weak lifting.

Proof Let M be a weak lifting module and N be a direct summand of M so that $M = N \oplus K$ for some submodule K of M. Let S be a semisimple submodule of N. Since $S \subseteq M$, then M = S + T and $S \cap T \ll T$ for some submodule T of M. By the modular law, $N = S + (N \cap T)$. Then by Lemma 1.1, $M = S' \oplus T$ for some $S' \subseteq S$. By the modular law again, we get $N = S' \oplus (N \cap T)$, that is, $N \cap T$ is a direct summand of N. We claim that $T = (N \cap T) \oplus K$: Since $S' \subseteq N$ and $M = N \oplus K = S' \oplus T$, then K can be considered as a submodule of T, then $(N \cap T) \oplus K \subseteq T$. Conversely, if $t \in T \subseteq M = N \oplus K$, then t = n+k for some $n \in N$ and $k \in K$, since $n = t - k \in T$, then $n \in N \cap T$. Hence $N \cap (S \cap T) \subseteq S \cap T \ll T = (N \cap T) \oplus K$. Since $S \cap T \subseteq N \cap T$, then by ([5], 19.3.(5)), $S \cap (N \cap T) \ll N \cap T$.

In ([3], Theorem 2.7), authors prove that finite direct sum of w- \oplus -supplemented modules is w- \oplus - supplemented. And by Theorem 1.2, we can say that finite direct sum of weak lifting modules are weak lifting. By considering with

Proposition 1.3, in [4], Proposition 2.1, Proposition 2.4 and Theorem 2.2 are unnecessary.

In [3], Proposition 2.3, Lemma 2.4, Theorem 2.8 are redundant and (D_3) property is not necessary in Proposition 2.6.

The following Lemma shows that, we should be careful about speaking direct summandness of a semisimple submodule.

Lemma 1.4. Let M be a module with $RadM \leq M$. Then there is no nonzero semisimple direct summand of M.

Proof Let N be a semisimple direct summand of M, then $M = N \oplus K$ for some submodule K of M. Then by ([5], 21.6) RadM = RadK and since $RadM \leq M$, then $K \leq M$ by ([1], Proposition 5.16). If $N \neq 0$, K = M, impossible. Therefore N = 0.

As a result of above Lemma, we may say, for instance, over a domain R, divisible R-modules have no nonzero semisimple direct summands.

Therefore, in [4], Proposition 1.7, Theorem 1.8, should have been written more carefully.

References

- F.W. Anderson and K.R. Fuller, "Rings and Categories of Modules", Springer, New York, 1992.
- [2] J. Clark, C. Lomp, R. Wisbauer and N. Vanaja, "Lifting modules", Birkhäuser-Verlag, 2006.
- [3] D. Keskin and N. Orhan, Generalization of Weak Lifting Modules, Soochow Journal of Math., 32, 1, (2006), 71-76.
- [4] D. Keskin and N. Orhan, CCSR-Modules and Weak Lifting Modules, East-West Journal of Math., 5(1) (2003), 89-96.
- [5] R. Wisbauer, "Foundations of Modules and Rings", Gordon and Breach, 1991.