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Abstract

The transportation problem with given fixed supplies and demands is
well known in the linear optimization theory (see, for instance [1, 3]). It
has various applications in the real world and has been widely studied.
The purpose of this paper is to develop a new and rather simple algorithm
for solving the problem in the case where supplies and demands of stores
and destinations have not been fixed, but changed in a given interval.
The algorithm relies on reducing the original problem to an ordinary
transportation problem with a few bounded variables. This algorithm is
a further extension of the one presented in [2] for the case where only
supplies or demands can be changed.

1 Problem formulation

Let us first consider the mathematical formulation of the following problem,
which will be referred to as transportation problems with two sided-constraints
on supplies and demands. We are given a set of m supply points (or stores)
from which a good (ex. rice, cement ...) must be shipped. Supply point
i (i = 1, 2, · · · , m) can supply some units of the good, which is in given interval
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[ai, ai] (0 ≤ ai ≤ ai) We wish send the good from the supplies to a set of n
demand points (or shops). Demand point j (j = 1, 2, ..., n) need obtain some
units of the good, which is in the given interval

[
bj , bj

]
(0 ≤ bj ≤ bj). Suppose

we are known a cost matrix C = ‖cij‖m×n which determines the cost cij of
shipping a unit of the good from supply point i to demand point j.

If variable xij is an unknown quantity of the good shipped from supply
point i to demand point j and let x = ‖xij‖m×n, the problem under consider-
ation may be formulated as follows: Minimize objective (or cost) function f(x)
defined as

f(x) =
m∑

i=1

n∑
j=1

cijxij (1)

subject to

ai ≤
n∑

j=1

xij ≤ ai, i = 1, · · · , m (2)

bj ≤
m∑

j=1

xij ≤ bj , j = 1, · · · , n (3)

xij ≥ 0, i = 1, · · · , m, j = 1, · · · , n (4)

where the sum
n∑

j=1
xij in (2) represents the total amount of the good shipped

from supply point i and the sum
m∑

i=1

xij in (3) represents the total amount of

the good obtained in demand point j. Let S be the set of all x = ‖xij‖m×n
satisfying (2) - (4).

We study conditions for solvability of problem (1) - (4). Define

a =
m∑

i=1

ai, a =
m∑

i=1

āi, b =
n∑

j=1

bj, b =
n∑

j=1

bj

Proposition 1. In order for S �= ∅ it is necessary and sufficient that the
following condition holds

[a, a] ∩ [
b, b

] �= ∅ (5)

Proof. The necessity is obvious because of the sum of all variables xij in (2)
is equal to the sum of all xij in (3). Conversely, if (5) holds then there exist
numbers a1, · · · , am and b1, · · · , bn such that ai ≤ ai ≤ ai; bj ≤ bj ≤ bj and

a1 + · · ·+ am = b1 + · · ·+ bn (balance of supply and demand).

Hence S �= ∅. In addition, S is bounded because of (2) - (4). Consequently, (5)
ensures that problem (1) - (4) has an optimal solution.
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2 Reduction to an Equivalent Transportation

Problem

To be able to apply the well-known algorithms for solving the transportation
problem of linear programming, let us now transform problem (1) - (4) into an
equivalent transportation problem that has fixed given supplies and demands
and the balance of supply and demand. To do this, we introduce additional
variables xi0 (i = 1, 2, · · · , m) and x0j (j = 1, 2, · · · , n), and consider the
following problem, denoted by (P ) for short:

(P ) f(x) ≡
m∑

i=1

n∑
j=1

cijxij → min (6)

n∑
j=1

xij + xi0 = ai, i = 1, 2, · · · , m (7)

m∑
i=1

xij + x0j = bj , j = 1, 2, · · · , n (8)

xij ≥ 0, i = 1, · · · , m, j = 1, · · · , n, (9)

0 ≤ xi0 ≤ ei = ai − ai, i = 1, · · · , m (10)

0 ≤ x0j ≤ fj = bj − bj , j = 1, · · · , n (11)

where variable xi0 (i = 1, 2, · · · , m) indicates some amount of the good that
remains from the maximum capacity of supply at supply point i (after shipped
the good to all the demand points) and x0j (j = 1, · · · , n) is an amount of the
good that is deficient as compared with the maximum need bj of demand point
j (after obtained the good from all the supply points)

Proposition 2. (P) defined by (6) - (11) is equivalent to problem (1) - (4).

Proof. Let x = [xij]m×n be a feasible solution to problem (1) - (4). We define

xi0 = ai −
n∑

j=1

xij for all i = 1, 2, · · · , m

and

x0j = bj −
m∑

i=1

xij for all j = 1, 2, · · · , n

that is (7) and (8) hold. It follows from (2) that 0 ≤ xi0 ≤ ei ≡ ai − ai for all
i = 1, · · · , m and 0 ≤ x0j ≤ fj ≡ bj − bj for all j = 1, · · · , n So {xij, xi0, x0j}
is feasible for (P).
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Conversely, if {xij, xi0, x0j} is feasible for (P), it follows from (10) and (11)
that x = [xij]m×n satisfies (2) - (4), i.e.x = [xij]m×n is feasible for problem (1)
- (4). Therefore, (P) is equivalent to problem (1) - (4).

It is easy to see that (5), which ensures the solvability of problem (1) - (4),
is also the solvability condition for (P).

We now show that problem (P) defined by (6) - (11) with assumption that
(5) holds is in fact a transportation problem with some upper bounded variables
and then describe an appropriate algorithm for this problem.

Summing up constraints (7) for all i we have

m∑
i=1

n∑
j=1

xij +
m∑

i=1

xi0 =
m∑

i=1

āi = ā.

Let

x00 =
m∑

i=1

n∑
j=1

xij, we get
m∑

i=0

xi0 = a (12)

Analogously, summing up constraints (8) for all j we obtain

n∑
j=1

m∑
i=1

xij +
n∑

j=1

x0j =
n∑

j=1

bj = b.

This implies
n∑

j=0

x0j = b (13)

Set a0 = b, b0 = a. By (12) and (13) we can rewrite (P) in the form:

(P ) f(x) ≡
m∑

i=1

n∑
j=1

cijxij → min (14)

n∑
j=0

xij = ai, i = 0, 1, · · · , m, (15)

m∑
i=0

xij = bj , j = 0, 1, · · · , n, (16)

xij ≥ 0, i = 0, 1, · · · , m, j = 0, 1, · · · , n, (17)

0 ≤ xi0 ≤ ei ≡ ai − ai, i = 1, 2, · · · , m, (18)

0 ≤ x0j ≤ fj ≡ bj − bj, i = 1, 2, · · · , n, (19)
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It is worth noting that problem (14) - (19) has the balance of supply and
demand:

a0 + a1 + · · ·+ am = b + a ≡ b0 + b1 + · · ·+ bn = a + b.

Since (P) has a rather specific structure that is similar to the one of trans-
portation problems unless some bounded variables xi0 (i = 1, 2, ...,m) and
x0j (j = 1, 2, ..., n) are added, it seems to be unuseful if we simply take use of
general techniques of linear programming to treat bounded variables. So in the
sequel, exploiting the specific feature of (P) we shall develop a simple and effi-
cient algorithm for solving (P), which actually slightly differs from well-known
algorithms for transportation problems. We shall solve (P̄ ) instead of (P).

To solve (P ) we draw a table T having m+1 rows i = 0, 1, · · · , m and n+1
columns j = 0, 1, · · · , n, where row i ≥ 1 corresponds to supply point i and
column j ≥ 1 to demand point j; row i = 0 writes down the value of variables
x0j (j ≥ 1), column j = 0 writes down the value of variables xi0 (i ≥ 1).
Variable x00 is used to put down the total units of the good shipped from all m
supply points i ≥ 1 to all n demand points j ≥ 1. By (12), (13) and (15) - (17),
it can be easily checked that T is in fact the table associated with an ordinary
transportation problem of size (m + 1)× (n + 1) of linear programming, which
is usually called the transportation table.

We recall that a cell in T is an intersection of a row and a column of T
and denote by (i, j) the cell in row i and column j. For each cell (i, j) in T we
define a vector, denoted by Aij, of m + n + 2 entries with 1 in the i and the
(m + 1 + j) entry and zero elsewhere.

We will need the following properties that are known from the transporta-
tion table.

Proposition 3. The system of constraints (15) and (16) of (P ) has the rank
m + n + 1.

Proposition 4.. Let G be any subset of cells in table T . Vectors {Aij|(i, j) ∈
G} of problem (P ) is linearly independent iff the set of all cells in G contains
no cycles.

A subset G of cells in T is said to be chosen if G has the two following
properties:

(i) G has exactly m + n + 1 cells that contain no cycles and cell (0, 0) ∈ G.

(ii) ( P ) with additional conditions: xi0 = 0 or xi0 = eifor all (i, 0) /∈ G x0j =
0 or x0j = fj for all (0, j) /∈ G and xij = 0 for all (i, j) /∈ G, i ≥ 1, j ≥ 0
has at least one feasible solution.
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Let x = [xij](m+1)×(n+1) be such a solution. Clearly, 0 ≤ xi0 ≤ ei for all
(i, 0) ∈ G, 0 ≤ x0j ≤ fj for all (0, j) ∈ G, 0 ≤ xij for all (i, j) ∈ G, i ≥ 1, j ≥ 1,
and vectors Aij for (i, j) ∈ G are linearly independent (by (i) and Proposition
4). Hence, x = [xij](m+1)×(n+1) is a basic feasible solution for (P ). If G is a
chosen subset of cells inT then any cell in G is also called chosen.

Given a chosen subset of cells G in T , we can determine for each row
i ≥ 1 a number ui (i = 1, 2, · · · , m) and for each column j ≥ 1 a number
vj(j = 1, 2, · · · , n) such that

⎧⎪⎨
⎪⎩

ui = 0 for all (i, 0) ∈ G

vj = 0 for all (0, j) ∈ G (20)

ui + vj = cij for all (i, j) ∈ G, i ≥ 1, j ≥ 1

The numbers ui and vj satisfying (20) are called potentials of rows and columns
respect to G, respectively. They can be determined (within a nonzero constant)
by solving the system of equations (20), which has a triangle form, as follows.
At first, if (i, 0) ∈ G let ui = 0 and if (0, j) ∈ G let vj = 0. Then, if (i, j) ∈
G, j ≥ 1 and ui was defined but vj not, set vj = cij − ui. At last, if (i, j) ∈
G, i ≥ 1 and vj was defined but ui not, set ui = cij − vj . Stop computing
whenever the potentials have been found for all rows i ≥ 1 and all columns
j ≥ 1.

Proposition 5 (Optimality Criteria). An extreme feasible solution x on a
chosen subset G is optimal for (T) if the potentials ui and vj (respect to G)
satisfy all the following:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) ui ≤ 0 for all (i, 0) /∈ G, xi0 = 0,
(ii) ui ≥ 0 for all (i, 0) /∈ G, xi0 = ei, (21)
(iii) vj ≤ 0 for all (0, j) /∈ G, x0j = 0,
(iv) vj ≥ 0 for all (0, j) /∈ G, x0j = fj,

(v) ui + vj ≤ cij for all (i, j) /∈ G, i ≥ 1, j ≥ 1.

3 Algorithm for Solving [P̄]

We are now in a position to describe the algorithm for solving (P̄) defined by
(14) - (19).

Step 0 (Find an initial chosen subset of cells and an initial basic feasible
solution for (P̄). Assume that a ≤ b ≤ a (Similarly to case b ≤ a ≤ b). Find
the smalleast index k (1 ≤ k ≤ m) satisfying

a1 + · · ·+ ak + ak+1 + · · ·+ am ≥ b = b1 + · · ·+ bn (∗∗)
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(b is the sum of minimum demands of all demand points). If k = m then cross
out numbers ak+1, · · · , am on the left of the above inequality.

Define the initial supply amount for each supply point i = 1, 2, · · · , m as
follows:

ai =

⎧⎪⎨
⎪⎩

āi for all i = 1. · · · , k − 1, if k > 1,

b − (ā1 + · · ·+ āk−1 + ak+1 + · · ·+ am) for i = k,

ai for all i = k + 1. · · · , m, if k < m.

Define the initial demand for each demand point bj = bj , j = 1, 2, · · · , n. It is
clear that

a1 + a2 + · · ·+ am = b1 + b2 + · · ·+ bn ≡ b

Solving a transportation problem of size m×n with supply vector a=(a1,..., am)T

and demand vector b = (b1, b2, · · · , bn)T , for example by the potential method
[3], obtain an optimal basic solution

[
x0

ij

]
m×n

along with associated potentials
ui, vj and a chosen subset of cells G ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} satisfying

(i) (i, 0) /∈ G for all i, (0, j) /∈ G for all j, G has m + n − 1 cells that contain
no cycles,

(ii) x0
ij = 0 for all (i, j) /∈ G, i ≥ 1, j ≥ 1,

(iii) uk = 0, ui + vj ≤ cij for all (i, j), i ≥ 1, j ≥ 1,

(iv) ui + vj = cij for all (i, j) ∈ G.

It can be checked that G = G ∪ {(0, 0), (k, 0)} is a chosen subset of cells in T
and

x = [xij](m+1)×(n+1) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi0 = 0 for all i < k,

xk0 = ak − ak,

xi0 = ei for all i > k,

x0j = bi − bj=fj for all j ≥ 1,

x00 =
∑

i≥1,j≥1
x0

ij,

xij = x0
ij for all (i, j), i ≥ 1, j ≥ 1,

is an basic feasible solution for (P ) and associated potentials of rows and
columns are the same ui and vj .

Step 1 (Check for optimality). If potentials ui and vj satisfy conditions
i) - v) in (21) then stop the algorithm and the current basic feasible solution x
is optimal. Otherwise, some of the following cases occur:
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(i) ui > 0 for some i such that (i, 0) /∈ G, xi0 = 0,

(ii) ui < 0 for some i such that (i, 0) /∈ G, xi0 = ei,

(iii) vj > 0 for some j such that (0, j) /∈ G, x0j = 0,

(iv) vj < 0 for some j such that (0, j) /∈ G, x0j = fj ,

(v) ui + vj > cij for some cell (i, j) /∈ G, i ≥ 1, j ≥ 1.

Go to Step 2.

Step 2 (Find a new chosen subset of cells). Consider separately one
of the five cases:

(i) ui0 > 0 for 1 ≤ i0 ≤ m, (i0, 0) /∈ G, xi00 = 0: Let us denote by C the cycle
created by cell (i0, 0) with some cells in G. Assume that C is of form

(i0, 0), (i1, 0), (i1, j1), (i2, j1), · · · , (ik, jk), (i0, jk), k ≥ 1, and j1, · · · , jk ≥ 1
(23)

The value of variable xi00 will be increased from its present value at 0
and (i0, 0) becomes the entering (chosen) cell for the next iteration if the
new value of xi00 doesnt hit its upper bound ei0 . So, we partition the
cells of C into two subsets C+ and C− by rule: let cell (i0, 0) in C+ and
cell (i1, 0) in C−. The remained cells of C (in columns j ≥ 1), started
from cell (i1, j1) are consecutively let in C+ and in C−.

(ii) ui0 < 0 for 1 ≤ i0 ≤ m, (i0, 0) /∈ G, xi00 = ei0 : We denote by C the cycle
created by cell (i0, 0) with some cells in G. Assume again that C is of
form (23).

The value of variable xi00 will be descreased from its present value at the
upper bound and (i0 , 0) becomes the entering (chosen) cell for the next
iteration if the new value of xi00 is still positive. In this case, we partition
the cells of C into two subsets C+ and C− by another rule: let cell (i0, 0)
in C− and cell (i1, 0) in C+. The remained cells of C (in columns j ≥ 1),
started from cell (i1, j1) are consecutively let in C− and in C+.

(iii) vj0 > 0 for 1 ≤ j0 ≤ n, (0, j0) /∈ G, x0j0 = 0: Define the cycle C created
by cell (0, j0) with some cells in G. Assume that C is of form

(0, j0), (0, j1), (i1, j1), (i1, j2), · · · , (ik, jk), (ik, j0), k ≥ 1, and i1, · · · , ik ≥ 1
(24)

The value of variable x0j0 will be increased from its present value at 0
and (0, j0) becomes the entering (chosen) cell for the next iteration if the
new value of x0j0 doesnt hit its upper bound fj0 . So, we partition the
cells of C into two subsets C+ and C− by rule: let cell (0, j0) in C+ and
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cell (0, j1) in C−. The remained cells of C (in rows i ≥ 1), started from
cell (i1, j1) are consecutively let in C+ and in C−.

(iv) vj0 < 0 for 1 ≤ j0 ≤ n, (0, j0) /∈ G, x0j0 = fj0 : Define the cycle C created
by cell (0, j0) with some cells in G. Assume also that C is of form (24):

The value of variable x0j0 will be descreased from its present value at
the upper bound and (0, j0) becomes the entering (chosen) cell for the
next iteration if the new value of x0j0 is still positive. In this case, we
partition the cells of C into two subsets C+ and C− by a different rule:
let cell (0, j0) in C− and cell (0, j1) in C+. The remained cells of C (in
rows i ≥ 1), started from cell (i1, j1) are consecutively let in C− and in
C+.

(v) ur + vs > crs for (r, s) /∈ G, r ≥ 1, s ≥ 1: Define the cycle C created by
cell (r, s) with some cellls in G (by successively cross out hanging cells in
rows and columns). Consecutively let the cells of C into two subsets C+

and C− with the convention that cell (r, s) ∈ C+. The value of variable
xrs will be increased and (r, s) becomes a new chosen cell for the next
iteration.

Take one of the indicated cases (Ex. by random rule) and then go to Step
3.

Step 3 (Find the leaving cell and new chosen subset of cells). Define
amount of the good h, which is moved on cycle C.

h ≡ xpq = min{xij if (i, j) ∈ C−, ei−xi0 if (i, 0) ∈ C+, fj−x0j if (0, j) ∈ C+} ≥ 0
(25)

If cell (p, q) ≡ (i0, 0) and cell (i0, 0) is taken in case (i) or (ii) of Step 2 or if
(p, q) ≡ (0, j0) and cell (0, j0) is taken in case (iii) or (iv) of Step 2 then the
chosen subset of cells in T is unchanged: G

′
= G. Otherwise, cell (p, q) is

excluded from G and chosen subset of cells G
′
in T which is contains no cycles

is defined by

G′ = (G − {(p, q)}) ∪ {(i0, 0) or (0, j0)) or (r, s)} (26)

Step 4 (Update basic solution). The new feasible solution of (P ) is defined
by

x
′
ij =

⎧⎨
⎩

xij, if (i, j) /∈ C,
xij + h, if (i, j) ∈ C+,
xij − h, if (i, j) ∈ C−.

(27)

It can be checked that x
′

=
[
x

′
ij

]
(m+1)×(n+1)

is an basic feasible solution of

(P ).
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Recompute potentials ui and vj (with respect to (G
′
)) by (20) and go back

to Step 1.

An basic feasible solution x = [xij](m+1)×(n+1) for (P ) with a chosen subset
of cells in (G) is called nonsingular if xij > 0 for all (i, j) ∈ G, i ≥ 1, j ≥ 1,
0 < xi0 < ei for all (i, 0) ∈ G, i ≥ 1 and 0 < x0j < fj for all (0, j) ∈ G, j ≥ 1
and singular otherwise (that is there exist xij = 0 for (i, j) ∈ G or xi0 = ei

for (i, 0) ∈ G or x0j = fj for (0, j) ∈ G). In general, it may be able to occur
singular feasible solutions while solving (P ) and so is the situation of recycling.
Since the recycling is a very rare opportunity in solving (P ), so if there many
cells attaining minimum in (25) as (p, q), we can take one of them as an leaving
cell. However, we still have the following.

Theorem 1 (Finiteness of the algorithm). If all extreme feasible solu-
tions of (P ) are nonsingular then the above-described algorithm for solving (P )
terminates after finitely many steps.

Proof. It is the same as in proof of Theorem 1 in [2], but there are following
differences:

When Step 2 is executive, if as the cell dissatisfying optimality criteria (21)
we take (i, 0) /∈ G for ui > 0, xi0 = 0 (or for ui < 0, xi0 = ei) and if in Step
3 variable xi0 changes its value from 0 to ei (or from ei to 0) then G

′ ≡ G.
In these cases, the objective functions value is reduced by amount ei × ui > 0
(or−ei × ui > 0).

Also, if in Step 2 as the cell dissatisfying optimality criteria (21) we take
(0, j) /∈ G for vj > 0, x0j = 0 (or for vj < 0, x0j = fj) and if in Step 3 variable
x0j changes its value from 0 to fj (or from fj to 0) then G

′ ≡ G. In these cases,
the objective functions value is reduced by amount fj×vj > 0 (or −fj×vj > 0).

Consider case G
′ �= G. As seen in the proof of Theorem 2 in [2], if in Step

2 the cell dissatisfying optimality criteria (23) is chosen by either of cases (i),
(ii), (iii), (iv) or (v) then the objective functions value is reduced by amount
h × ui, −h × ui, h × vj, −h × vj or h × (ui + vj − cij) > 0, respectively.

Hence, under hypothesis that all basic feasible solutions of (P ) are nonsin-
gular then h > 0 by (25) and after each iteration the objective functions value
strictly decreases. So, it is not able to occur recycling. Since the total number
of all chosen subsets of cells in T which are different and no contain cycles
is finite, process of solving (P ) must terminate after finitely many steps and
finally we obtain an optimal solution of (P ).
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4 Ilusstrative Example

Solve problem (1) - (4) with the input data: m = 3 and n = 4 minimum supply
vector A = (50 60 70) with sum of its entries a = 180 and maximum supply
vector A = (100 120 180) with sum of its entries a = 400; minimum demand
vector B = (40 50 60 70) with sum of its entries b = 220 and maximum demand
vector B = (150 80 100 120) with sum of its entries b = 450 and cost matrix

C =

⎡
⎣

1 9 5 6
2 9 8 4
3 4 2 1

⎤
⎦ .

In this example, solvability condition (5) is fulfilled because

[180, 400]∩ [220, 450] = [220, 400] �= ∅
Step 0. We see that a = 180 < b = 220 < a = 400 and the difference of
minimum supply and demand is t ≡ b − a = 220 − 180 = 40 So, the smallest
index defined by (**) in Step 0 is k = 1 and the initial supply amounts for
supply points defined by (22) are a1 = a1 + t = 50 + 40 = 90 < a1 = 100, a2 =
a2 = 60, a3 = a3 = 70.

Solve a transportation of size 3 × 4 with supply vector A = (90 60 70) and
demand vector B = (40 50 60 70) and cost matrix C, obtaining an optimal
solution and associated potentials which is given in Table 1. Steps for solving
(P ) by the above-described algorithm is summarized in sequential tables.

Table 1. Chosen subset G and corresponding optimal solution at Step 0

Step 1. G contains cells marked by ”•” . Adding to G cell (0, 0) with x00 =
220, cells (i, 0), i = 1, 2, 3 with xi0 = ai − ai(x10 = 10, x20 = 60, x30 = 110)
and cells (0, j), j = 1, 2, 3, 4 with x0j = bj − bj = fj(x01 = 110, x02 = 30, x03 =
40, x04 = 50), we obtain Table 2.
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Table 2. Chosen subset of cells and the 1st basic solution

Cell (3, 0) /∈ G with x30 = e3 = 110, u3 = −3 < 0 is the entering (chosen)
cell, h = min{x30 = 100, x13=50, e1−x10=40} = 40 cell (1. 0) is excluded. We
obtain Table 3.

Table 3. Chosen subset of cells and the 2nd basic solution

Cell (0.1) /∈ G with x01 = f1 = 110, v1 = −2 < 0 is the entering (chosen)
cell, h = min{x01 = 100, x13 = 10, x30 = 70} = 10, (1.3) is the leaving cell.
The 3rd basic solution is given in Table 4.
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Table 4. Chosen subset of cells and the 3rd basic solution

Cell (2.1) with u2 + v1 = 3 > c21 = 2 is the entering cell, h = min{x24 =
60, x30 = 60, x01 = 100} = 60, (2.4) is the leaving cell. The 4th basic solution
is given in Table 5.

Table 5. Chosen subset of cells and the 4th basic solution

As the solution in Table 5 has potentials satisfying optimal condition (21)
it is an optimal solution of (P ). Therefore we found the optimal amount for
supply and demand points and the optimal transportation solution as follows
(see Table 6).
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In the listed above tables we used the following symbols ”•”: chosen cell, ”�”:
entering cell, ”⊗”: leaving cell. The bar upper (under) the numbers in ”Supp”
collumns and ”Demand” rows on Tables 1 and 6 show that supply good attains
the maximum suply capacity at corresponding supply ai (minmimum ai). The
bars over the numbers in columns j = 0 (rows i = 0) in Tables 2 - 5 shows
that the value of corresponding variables xi0(x0j) hit its upper bound ei(fj)
(1st, 2nd and 3rd basic solutions).

Remark. Evidently, as compared with algorithms treated linear programming
problems with bounded variables, our algorithm is considerable simpler. Cal-
culations are only similar to that of in solving transportation problems of linear
programming: only the plus or minus operation and the operation that finds
the minimum of nonnegative numbers are used (but not multiplication and
division).

5 Conclussion

This paper studies the transportation problem in the case where supplies or /
and demands of stores and destinations can be changed in a given interval. The
original problem is first transformed into an ordinary transportation problem
with a few upper-bounded variables. The algorithm for solving the equivalent
problem is presented and an small illustrative example is given.
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