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Abstract

Most of the structures in Civil Engineering consists in assemblies of
deformable bodies, thus it is of interest to dispose of efficient models of
junctions between deformable solids. The classical schemes of Continuum
Mechanics lead to boundary value problems involving several parameters,
one being essential: the (low) thickness of the layer filled by the adhesive.
For usual behaviors of the adherents and the adhesive, it is not difficult
to prove existence of solutions, but their numerical approximations may
be difficult due to the rather low thickness of the adhesive implying a too
fine mesh. We propose a simplified but accurate mathematical modeling
by a rigorous study of the asymptotic behavior of the three-dimensional
adhesive when its thickness goes to zero. Depending on the stiffness of
the adhesive, the limit model will replace the thin adhesive layer by either
a mechanical constraint along the surface the layer shrinks toward or a
material surface; the structure of the constitutive equations of the con-
straint or of the material surface keeping the memory of the mechanical
behavior of the adhesive.

The mathematical techniques used in these studies, carried out for
more than 25 years, involve variational convergences and the Trotter
theory of convergence of semi-groups of operators. We will present clas-
sical results concerning standard elastic or dissipative behaviors of the
adhesive and some new ones devoted to microscopic aspects, imperfectly
bonded adhesive joints, loaded joints, etc. . .

Key words: junctions, asymptotic analysis, variational convergence, convergence of semi-
groups of operators.
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1 Introduction

Most of the structures in Civil Engineering consists in assemblies of deformable
bodies, thus it is of interest to dispose of efficient models of junctions be-
tween deformable solids. The classical schemes of Continuum Mechanics lead
to boundary value problems involving several parameters, one being essential:
the (low) thickness of the layer filled by the adhesive. For the usual behaviors
of the adherents and the adhesive, it is not difficult to prove existence of solu-
tions, but their numerical approximations may be difficult due to the rather low
thickness of the adhesive implying a too fine mesh. Moreover, the mechanical
properties of the adherents and the adhesive being very different, the involved
systems may be very ill-conditioned. Hence, it is capital to propose simpler
but accurate enough models. A classical way is to consider the real geomet-
rical and mechanical data, like thickness, stiffness, etc, as parameters and to
study the asymptotic behavior of the parametrized boundary value problems
when these parameters go to a natural limit (0 if the quantity is small, +∞
if it is large!). This may be done by various methods: formal asymptotic ex-
pansions, singular perturbations,. . . Here, we chose the rigorous point of view
of variational analysis by studying the asymptotic behavior of the minimizers
of the total mechanical energy functional. We show that they converge (with
respect to a topology induced by the mechanical energy) toward the solutions
of a minimization problem which will be our proposal of simplified model.

Two main cases of elastic junctions have been treated in this way:

i) the soft junctions, where the stiffness of the junction is far lower than the
ones of the adherents (it corresponds to soft adhesive bonded joints), see
for instance [1] and the references therein,

ii) the hard junctions, where the stiffness of the junction is far larger than
the ones of the adherents (which may occur in some situations of welding),
see for instance [2], [3] and the references therein.

Let us recall that a big difference in the nature of the asymptotic models occurs.
The soft adhesive junction is replaced by a mechanical constraint between the
adherents whose surface energy is a function of the relative displacement of the
adherents along the interface the junction shrinks toward. On the contrary, the
hard junction is replaced by a material surface perfectly stuck to the adherents,
with a surface strain energy density function of the surface gradient of the
displacement (here, there is no jump of displacement across the interface).

Anyway, these models are simpler than the genuine ones because surface
integral functionals are involved in place of integral functionals on a thin layer.
They may be accurate enough due to the rigorous convergence results: the
closer the parameters to their natural limits, the sharper the models!

Here, I will describe some extensions of these two basic results which have
recently been done in Montpellier in collaboration with Gérard Michaille, Oana
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Iosifescu and Pongpol Juntharee; all of the material is gathered in the Ph.D.
thesis of Pongpol Juntharee. The first part is devoted to soft junctions and two
extensions are presented. First, we consider the case when the soft adhesive
bonded joint is not perfectly stuck to the adherents and after the case when
the joint, perfectly bonded to the adherents, is subjected to a loading. The
second part concerns hard junctions and is a first attempt to model some frac-
ture phenomena in soldered joints. For the sake of simplicity, all the junctions
considered here occupy layers of constant thickness and, like the adherents,
are assumed to be elastic. Hence the starting equilibrium problems may be
formulated in terms of minimization problems in some suitable function spaces
and we systematically derive our asymptotic models through variational con-
vergence methods.

2 Soft junctions

2.1 An asymptotic model for a thin, soft and imperfectly
bonded elastic joint

To simplify, we confined to the case of a unique adherent lying in a domain Ω,
included in {x3 > 0} with a Lipschitz-continuous boundary whose intersection
S with {x3 = 0} is a domain of R

2. It is linked with a rigid support {x3 <
−ε} by an adhesive occupying the layer Bε := S × (−ε, 0). The bulk energy
density of the adherent is a strictly convex function of the linearized tensor of
deformation e(u)−u is the displacement - with quadratic growth. The adherent
is subjected to body and surface forces of densities f and ϕ, and is clamped
along Γ0 ⊂ ∂Ω. The bulk energy density of the adhesive is a function of the
linearized tensor of deformation of the type :

WμS ,μD (e) := μSW1(tr e) + μDW2(dev(e))

tr e := e11 + e22 + e33, dev(e) := e − 1
3
Id

which, without particular mathematical difficulties, generalizes the density as-
sociated with an isotropic linearly elastic material, W1, W2 being strictly convex
with quadratic growth (but, as for W , non necessarily quadratic!). We also as-
sume the existence of smooth enough recession functions of order 2 W∞,2

i . The
adhesive is not subjected to forces, is clamped on the rigid support and the
mechanical constraint between the adhesive and the adherent is not necessarily
pure adhesion but is described by a surface energy density h, which is a non
negative, convex, lower semi-continuous function in R

3 vanishing at 0. Thus,

both realistic smooth densities like
1
p
|·|p and realistic non smooth densities like

indicator functions of closed convex subsets of R
3 may be taken into account!
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Assuming the forces densities of class L2, it is clear that an equilibrium con-
figuration is given by the unique solution ūs of the following problem involving
the triple s := (ε, μS , μD):

(Ps) Min{Fs(ν) − L(ν); ν ∈ Vs }
with
Vs := { ν ∈ L2(Ωε; R3); ν+ := ν |Ω ∈ H1

Γ0
(Ω; R3), ν− := ν |Bε

∈ H1
S−ε

(Bε; R3) },
Ωε := Ω ∪ Bε

H1
Γ0

(Ω; R3) := { ν ∈ H1(Ω; R3); ν = 0 on Γ0 }
H1

S−ε
(Bε; R3) := { ν ∈ H1(Bε; R3); ν = 0 on S−ε := (0, 0,−ε) + S }

L(ν) :=
∫
Ω

f(x) · ν(x) dx +
∫
Γ1

ϕ(x) · ν(x) ds, the work of external loading,
Fs(ν) :=

∫
Ω

W (e(ν+)) dx +
∫

Bε
WμS ,μD (e(ν−)) dx +

∫
S

h([ν ](x̂, 0)) dx

[ν ] := γ0(ν+)−γ0(ν−), the jump of displacement across S (or the relative dis-
placement along S) where the same symbol γ0(w) denotes the trace on S of
any element w of both H1(Bε; R3) and H1(Ω; R3), of course x̂ = (x1, x2).
To get a simplified model (suitable for numerical computations), we study
the asymptotic behavior of ūs under the conditions: there exist s̄ ∈ {0} ×
[0,∞)2, (μ̄S , μ̄D) ∈ [0,∞]2 and a positive real number ε0 such that: s̄ = lim s,
(μ̄S , μ̄D) = lim(μS/ε, μD/ε), 0 = lim(εμS , εμD), 0 < ε < ε0. It was shown
in [1] that the surface energy density

W μ̄S ,μ̄D (ν) = W∞,2
μ̄S ,μ̄D

(ν) := μ̄SW∞,2
1 (tr(ν⊗se3))+μ̄DW∞,2

2 (dev(ν⊗se3)), ∀ν ∈ R
3

where
a ⊗s b =

1
2
(a ⊗ b + b ⊗ a) ∀a, b ∈ R

3, e3 = (0, 0, 1),

was the energy density associated with the mechanical constraint along S which
replaced the thin soft joint perfectly bonded to the adherents. In the present
case, we have shown that the imperfectly bonded joint shall be replaced by a
constraint whose associated energy density is the inf-convolution g of h with
WμS ,μD :

g(t) := h +e W μ̄S ,μ̄D (t) := inf{ h(t′) + W μ̄S ,μ̄D (t′′); t = t′ + t′′, t′′ ∈ R
3 }

That corresponds to the connecting in series of the initial mechanical constraint
along S with the limit constraint of density W μ̄S ,μ̄D ! More precisely, we
establish:

When s tends to s̄, then ūs|Ω converges strongly in H1
Γ0

(Ω; R3)
towards the unique solution ū of

(P ) Min{F (ν)− L(ν); ν ∈ H1
Γ0

(Ω; R3) }
and F (ū) − L(ū) = lims→s̄(Fs(ūs) − L(ūs)), where

F (ν) :=

{∫
Ω

W (e(ν)) dx +
∫
S

g(γ0(ν)) dx̂− L(ν), when g(γ0(ν)) ∈ L1(S),
+∞, otherwise.
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This result is established by the usual strategy of variational convergence:

i) property of compactness for all the sequences us with bounded energies,

ii) upper bound for Fs(us),

iii) lower bound for Fs(us).

The point i) is obtained through estimations in function of ε of the constants
involved in the inequalities of Poincaré, of Korn and of continuity of the trace
operator from H1

Γ0
(Bε; R3) into L2(S; R3) The point ii) is obtained by a lifting

to Bε (similar as the one of [1]) of the field defined on S which achieves the
minimum entering the definition of g(γ0(u)) thanks to a capital property of
Lipschitz-continuity of g, implied by the properties of W∞,2

i . Eventually, the
sub-differential inequality and an integration by parts supply the point iii).
Thus, our proposal of model is simpler than the genuine one: the integral
functional defined on the thin three-dimensional domain Bε is replaced by an
integral functional defined on the surface S the adhesive layer shrinks to. And,
the previous convergence result shows that the closer s to s̄, the more precise
the model. In practice, lim(μD/ε), lim(μS/ε) should be replaced by the true
real physical data μD/ε, μS/ε. We can still improve the model by a result of
corrector type by studying the asymptotic behavior of the optimal displacement
in the adhesive. We have proven that it is energetically equivalent to a field,
affine function in x3 whose trace on S is supplied by the minimizer involved by
the definition of g(γ0(ū)).
We have given various examples of realistic densities h including the one treated
in [4] by means of a zoom in the third coordinate in the joint and an indirect
mixed formulation with two fields (displacement and stress).
Finally, motivated by the tribological concept of the third body, a variant has
been considered where the thin layer contains a far thinner and softer layer in
the viscinity of the adherents.

2.2 Loaded adhesive joints

To be realistic, we consider a scalar problem, the unknown being, for example,
the deflexion of a membrane made of three parts and subjected to a loading
even in the inner part. If Ω := Σ × (−r, r), r > 0, where Σ is a bounded
domain of R

d, d = 1, 2, the adhesive occupies Bε := Σ × (−ε/2, ε/2) and the
adherents Ωε := Ω − Bε. The bulk energy densities respectively are εg and
f , g and f are strictly convex with a quadratic growth and one assumes the
existence for g of a recession function of order 2. The adherents are clamped
on Γ0 ⊂ ∂Ω and subjected to forces whose work L is a continuous linear
form on H1

Γ0
(Ωε0). On the contrary, the work of the loading applied to Bε is

defined from a continuous linear form on V (B) := { u ∈ L2(Ω);
∂u

∂xN
∈ L2(Ω) }.
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If τε is the scaling operator, continuous from V (Bε) into V (B), defined by
τε(u)(x̂, xN) := u(x̂, xN/ε) ∀x = (x̂, xN) ∈ Bε, then the work is the linear form
u �→ 〈Sε, τεu〉.
Thus, the determination of equilibrium configurations leads to the problem

(Pε) Min{Fε(ν)− L(ν); ν ∈ H1
Γ0

(Ω) },

where
Fε(ν) :=

∫
Ω

f(∇ν) dx + ε

∫
Bε

g(∇ν) dx− 〈Sε, τεν〉

Clearly, the problem has a unique solution ūε and we aim to study its asymp-
totic behavior when ε tends to zero and assuming that Sε strongly converges
toward some S in the dual of V (B). It is easy (by proceeding as in [1]) to estab-
lish that the sequences with bounded energies are relatively compact in L2(Ω)
and in H1

Γ0
(Ωη) weak for all positive η. The computation of the strong L2(Ω)-Γ

limit of the first two terms of L2(Ω) was done in [1], but as u �→ 〈Sε, τεu〉 is
not a continuous perturbation on L2(Ω), we expect that the limit problem will
involve a mixing of the limit behavior of the strain energy of the layer and of
the work of the loading acting on it.
Let

V0(B) := { u ∈ V (B); u = 0 on Σ × {−1/2, 1/2}},

G(u) := Min
{∫

B

g∞,2
(
0̂,

∂θ[u]

∂xN
(x) + [u](x̂)

)
dx − 〈S, θ〉; θ ∈ V0(B)

}
− 〈S, ũ〉,

[u] = u+ − u−, ũ(x) = [u](x̂)xN +
u+(x̂) + u−(x̂)

2
,

we have shown :

When ε tends to zero and Sε to S, then ūε strongly converges in
L2(Ω) toward the unique solution of

(P ) Min
{∫

Ω

f(∇u) dx + G(u) − L(u); u ∈ H1
Γ0

(Ω − Σ)
}

.

Hence, when S equals zero, G(u) reduces to
∫
Σ

g∞,2(0̂, [u](x̂))dx̂ which is noth-
ing but the surface energy obtained in [1]. On the contrary, when S does not
vanish, the functional G reads as

G(u) :=
∫

B

g∞,2(0̂,
∂θ[u]

∂xN
(x) + [u](x̂)) dx − 〈S, θ[u]〉 − 〈S, ũ〉,

where θ[u] is the minimizer involved by the first definition of G(u), thus G
generally is a non local functional, not only of the jump field [u] but also of
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the traces fields u+ and u−. The appearance of an internal additional state
variable θ stems from the weak convergence of τεuε toward θ + ũ in V (B) and,
consequently, a lower bound of ε

∫
Bε

g(∇uε) dx+ 〈Sε, τεuϕ〉 is G(u). To get the
upper bound, we build uε in Bε from the optimum θ[u] involved by G(u).
We may give various examples of sources Sε of slicing structure HN−1|Σ ⊗ Sε

x̂,
Sε

x̂ = aε(x̂, ·)dxN +
∑∞

−∞ bε,nδtε
n(x̂), corresponding to distributed or concen-

trated sources. Last, we may examine the generation by ∇ūε of a ”gradient
Young measure of concentration” that is analysed in the spirit of [5]. Moreover
we express the non local G(u) in function of this measure and we get bounds
for the probability measure μ̄x̂ stemming from the desintegration of μ̄.

3 Hard junctions

Here, we consider the modeling of some soldered joints and revisit previous
studies ( [2], [3]) devoted to the asymptotic behavior of a structure made of
two adherents connected by a thin and stiff adhesive layer. In [3], the adherents
and the adhesive were modeled as hyperelastic through bulk energy densities
with the same growth exponent p lying in (1, +∞), the stiffness of the adhesive
being of the order of the inverse of its thickness. Here, our first attempt to
account for some fracture phenomena in soldered joint is to model the adhesive
as pseudo-plastic, that is to say, its behavior is described by a bulk energy
density with linear growth. Hence, from the mathematical point of view, two
difficulties appear: the growth of the bulk energy in the adhesive and the
adherents are different and the linear growth in the adhesive will imply to
work in spaces of displacement fields with free discontinuities. We use the
same geometry as previously: Ω := S × (−r, r), r > 0, where S is a bounded
domain of R

2, the adhesive fills Bε := S × (−ε/2, ε/2) and the adherents
Ωε := Ω − Bε. The stiffness of the material occupying the small layer being
assumed to be of order 1/ε, we will use the framework of small perturbations
to model the adhesive. Its strain energy density reads as 1/εg(e(u)), g being
a convex function with linear growth. Concerning the adherents, there are
no mathematical difficulties to assume more generally that their strain energy
density f is a quasi-convex function (of the gradient of displacement ∇u) with
a growth of order p ∈ (1, +∞). The structure made of the adhesive perfectly
stuck to the two adherents is clamped on a part Γ0 of ∂Ω and subjected to
body and surface forces whose supports are included in Ωε0 and whose work
is denoted by L(·). Thus the determination of equilibrium conditions leads to
the problem

inf
{∫

Ωε

f(∇u) dx +
1
ε

∫
Ωε

g(e(u)) dx − L(u); u ∈ Aε

}
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with:

Aε := { u ∈ LD(Ω; R3); u|Ωε ∈ W 1,p
Γ0

(Ωε; R3) },
W 1,p

Γ0
(Ωε; R3) := { u ∈ W 1,p(Ωε; R3); u = 0 on Γ0 },

LD(Ω; R3) := { u ∈ L1(Ω; R3); e(u) ∈ L1(Ω; M3×3
S ) }.

Because of the linear growth of g, the problem may have no solutions but at
least ε-minimizers ūε. It has at least one solution, still denoted by ūε, in

Aε := { u ∈ BD(Ω; R3); u|Ωε ∈ W 1,p
Γ0

(Ωε; R3) },

where
BD(Ω; R3) := { u ∈ L1(Ω; R3); e(u) ∈ Mb(Ω; M3×3

S ) }.
As in [3] where the bulk energy of the adhesive has a superlinear growth, the
adhesive, when ε tends to zero, will be replaced by a material surface whose
surface energy density is a function of the surface strain denoted by e(γS(û)) ,
where γS(û) is the trace on S of the first two components of any element u of
W 1,p

Γ0
(Ω; R3) and e is the symmetrized gradient (in the sense of distributions).

This density g0 stems from g by:

g0(ζ) = Min{ g(ξ) : ξ ∈ M3×3
S , ξ̂ = ζ }, ξ ∈ M3×3

S �→ ξ̂ ∈ M2×2
S , ξ̂αβ = ξαβ.

But, whereas the traces of the limits of fields with bounded energies have surface
strain tensors in Lp(Ω; M2×2

S ) in the superlinear case, the linear growth will
yield surface strain tensors not in L1(Ω; M2×2

S ) but in Mb(Ω; M2×2
S ). More

precisely, if

A0 := { u ∈ W 1,p
Γ0

(Ω; R3); γS(û) ∈ BD(S; R2) },
BD(S; R2) = { u ∈ L1(S; R2); e(u) ∈ Mb(S; M2×2

S ) },

the total strain energy functional of the asymptotic model will be :

F0(u) :=

{∫
Ω

f(∇u) dx +
∫

S
g0(e(γS(û)) if u ∈ A0

+∞ if u ∈ L1(Ω; R3) − A0

the last term being taken in the sense of an integral of convex function of
measure, by due account of the following convergence result ([6]):

when ε tends to zero, there exist a not relabelled subsequence and
ū in W 1,p

Γ0
(Ω; R3) such that

ūε weakly converges to ū in BD(Ω; R3),

ūε weakly converges to ū in W 1,p
Γ0

(Ωη; R3)∀η > 0, γS(ˆ̄u) ∈ BD(S; R2).
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Moreover, ū is solution to

(P ) Min{F0(u) − L(u); u ∈ L1(Ω; R3) }

and
Fε(ūε) − L(ūε) → F0(ū) − L(ū).

In this model, the traces on S may have discontinuities which can be inter-
preted in terms of macrofissures or in terms of diffuse defects or fractal cracks.
Actually, due to the Sobolev embeddings, the traces on S γS(u) of the displace-
ment fields solutions to (P ) being continuous when p > 3, γS(û) as an element
of BD(S; R2) does not present jumps but only fractal or diffuse singularities.
It is worthwhile to note that the genuine model may involve fractures in Bε,
whereas the limit model (for p > 3) only involve diffuse defects or fractal cracks
in the material surface which replaces the adhesive . . . Taking into account the
geometry of the layer, one easily shows that for all sequence with bounded en-
ergies there exists u in W 1,p

Γ0
(Ω; R3) and a not relabelled subsequence such that

uε weakly converges in BD(Ω; R3) and W 1,p(Ωη ; R3) for all positive η towards
u, and that γS(û) belongs to BD(S; R2) and is the weak limit, in BD(S; R2)
quotiented by the set of rigid displacements of R

2, of the x3-average of ûε in
Bε. From that point and the very definition of g0, one deduces that F0 is a
possible lower bound with respect to the Γ-convergence of Fε towards F0 for
the strong topology of L1(Ω; R3). To check the upper bound, one first shows
that F0 is the lower semi-continuous regularization for L1(Ω; R3) of a functional
F̃0 of same expression as F0 but living on smooth fields (γS(u) ∈ C1(S; R3)).
Next is established that F̃0 ≥ Γ–lim sup Fε by the usual process of lifting into
Bε and one concludes by taking the l. s. c. envelope of the two members.
This result is then extended to more realistic situations of welding where the
domain occupied by the global structure (adhesive + adherents) does depend
on ε through suitable translations in the x3-direction.
Next, in view to take into account materials which may undergo reversible
solid/solid phase transitions, the hypotheses of quasiconvexity and convexity
for f and g respectively are dropped. A reasonable candidate for the limit
functional is :

F0(u) :=

{∫
Ω

Qf(∇u) dx +
∫
S

SQg0(e(γS(û)) if u ∈ A0

+∞ if u ∈ L1(Ω; R3) − A0,

where Qf is the quasiconvex envelope of f and SQg0 : M2×2
S �→ R is the

symmetric quasiconvexification of g0 defined by:

SQg0(ζ) := inf
{

1

D̂

∫
D̂

g0(ζ + e(ϕ)) dx̂; ϕ ∈ C∞
0 (D̂; R2)

}
.
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We only succeed in establishing the lower bound on the subset Ã0 of A defined
by:

Ã0 := { u ∈ W 1,p
Γ0

(Ω; R3); γS(û) ∈ SBD(S; R2) },
where SBD(S; R2) denotes the set of the elements u of BD(S; R2) whose Can-
tor part of the strain tensor e(u) vanishes, by using an additional argument
of [7]. Concerning the upper bound, as previously we exhibit a functional F̃0

such that F0 is the l. s. c. regularization. The difficulty due to the differences
of growth is overcome by introducing a perturbation η|·|p of g0.

The last point, for numerical reasons, examines the possibilities of a regu-
larization à la Norton-Hoff of the functional F0 involved in the limit problem.
If, we recall g0 by h assumed to be positively homogeneous of degree 1 and
such that

∃α, β > 0; α|ξ| ≤ h(ξ) ≤ β|ξ|, ∀ξ ∈ M2×2
S ,

we consider a sequence (hq)q∈(1,p) satisfying:

i) hq : M2×2
S �→ R

+ is convex and positively homogeneous of degree q,

ii) hq → h pointwise in M2×2
S ,

iii) ∃a > 0; ∀q > 1, close enough to 1, hq(ξ) ≥ h(ξ), ∀ξ ∈ M2×2
S , |ξ| ≥ a.

Then, we show that when q → 1, the functional Fq : W 1,p
Γ0

(Ω; R3) �→ R
+∪{+∞}

defined by:

Fq(u) :=

{∫
Ω

f(∇u) dx +
∫
S

hq(e(γS(û)) if u ∈ Bq

+∞ otherwise,

where
Bq := { u ∈ W 1,p

Γ0
(Ω; R3); hq(γS(û)) ∈ L1(S) },

Γ-converges for the weak topology of W 1,p
Γ0

(Ω; R3) towards

F0(u) :=

{∫
Ω

f(∇u) dx +
∫
S

h(e(γS(û)) if u ∈ B

+∞ otherwise,

where
B := { u ∈ W 1,p

Γ0
(Ω; R3); γS(û) ∈ BD(S; R2) }.

Hence, if the sequence (hq)q∈(1,p) moreover satisfies the coercivity condition

∃αq > 0, αq|ξ|q ≤ hq(ξ), ∀ξ ∈ M2×2
S ,

then the problem Min{Fq(u) − L(u); u ∈ Bq } has at least one solution ūq

and there exists a not relabelled subsequence such that ūq weakly converges
in W 1,p

Γ0
(Ω; R3) toward ū, solution to Min{F (u) − L(u); u ∈ B }. Because the

functions hq are convex and positively homogeneous of degree q and may be
chosen differentiable, the numerical methods of convex optimization are able
to easily supply approximations of ūq and consequently of ū !...
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