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Abstract

Let f : Rn → Rn be a Lipschitz mapping with generalized Jacobian
at x0, denoted by ∂f(x0), is of maximal rank. F. H. Clarke (1976) proved
that f is locally invertible. In this paper, we give some quantitative
assessments for Clarke’s theorem on the Lipschitz inverse, and prove
that the class of such mappings are open. Moreover, we also present a
quantitative form for Lipschitz implicit function theorem.

1 Introduction

Classical inverse and implicit function theorems have attracted many researchers
because of their applications in mathematics. These theorems are stated for the
class of Ck mappings, and there have been researches for non-smooth mappings
and global expansions. We recall some typical results of them.

F. H. Clarke (1976 - [1]) presented local inverse function theorem for Lipschitz
mappings. Let f : Rn → Rn be a Lipschitz mapping in a neighborhood of
x0 ∈ Rn. If the generalized Jacobian ∂f(x0) at x0 is of maximal rank (see
Def. 2.5, 2.6 below), then there exist neighborhoods U and V of x0 and f(x0),
respectively, and a Lipschitz function g : V → Rn such that

(a) g(f(u)) = u for all u ∈ U ,
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(b) f(g(v)) = v for all v ∈ V .

More general, M. S. Gowda (2004 -[6]) considered inverse and implicit function
theorems for the class of H - differentiable mappings. For the global case, J.
Hadamard (1906 -[9]) presented global diffeomorphism conditions for C1 map-
ping class. Generalizing the results of J. Hadamard, P. J. Rabier (1997 -[11])
demonstrated the results for C1 mapping class on smooth manifolds. O. Gutú
and J. A. Jaramillo (2007 -[7]) demonstrated global invertible conditions for the
class of quasi-isometric mappings between complete metric spaces. Recently,
T. Fukui, K. Kurdyka, and L. Paunescu (2010 -[5]) demonstrated some global
inverse function theorems for the class of tame continuous mappings.

Most of the results on the inverse and implicit function theorems only show
the existence of neighborhoods U and V to ensure f : U → V is invertible. The
quantitative assessments for the subjects in the results were not considered. It
is necessary to use the quantitative assessments for these theorems in several
different fields such as: number theory, optimization, theory of measurement,
assessment of complex algorithms, ...

Up to now, in general case, the problem of quantitative assessment for the
classical inverse and implicit function theorems is unresolved. For the case
n ≤ 2, P. Henrici (1988 - [10]) gave a quantitative form for analytic function
(one variable). Recently, D. Cohen (2005 - [13]) gave a different proof for
the case of analytic functions. Under the result, a quantitative form for the
theorems in the case of analytic function with two variables was given.

In this paper, we present a quantitative form for the Clarke inverse func-
tion theorem, where U , V and the Lipschitz constant of inverse mapping are
evaluated quantitatively by ∂f(x0). Moreover, we also give a quantitative form
for Lipschitz implicit function theorem and prove that the class of Lipschitz
mappings satisfying Clarke’s theorem are open: If f is perturbed by a mapping
h with the Lipschitz constant small enough, then the mapping f + h is locally
invertible.

The remaining of the paper is organized as follows. In Section 2 we intro-
duce necessary concepts and results. Section 3 presents the main results and
examples.

2 Preliminaries

2.1 Perturbations and the Inverse

In this paper, we shall use the following notations:

‖x‖ = (|x1|2 + · · ·+ |xn|2) 1
2 , where x ∈ Rn.
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‖A‖ = max‖x‖=1 ‖Ax‖, where A is a m × n matrix.

‖A‖F =

⎛
⎝ m∑

i=1

n∑
j=1

‖a2
ij‖
⎞
⎠

1
2

, where A is a m× n matrix.

If A ∈ Rn×n is an invertible matrix, then

‖A−1‖ =
1

min‖x‖=1 ‖Ax‖ .

Matrix norms have some of the following properties:

(i) ‖AB‖ ≤ ‖A‖‖B‖, ‖AB‖F ≤ ‖A‖F‖B‖F .

(ii) ‖A‖ ≤ ‖A‖F ≤ √
n‖A‖, where A is a m× n matrix.

(iii) For all A ∈ Rm×n and x ∈ Rn, we have ‖Ax‖ ≤ ‖A‖‖x‖.
Let M = Rm×n denote the vector space of m × n matrices, we topologize M
with the norm ‖ · ‖, and M(0, 1) denote the unit ball in M.

Lemma 2.1. If F ∈ Rn×n and ‖F ‖ < 1, then I − F is nonsingular and

(I − F )−1 =
∞∑

k=0

F k

with
‖(I − F )−1‖ ≤ 1

1 − ‖F ‖ .

Proof. See [8], Lemma 2.3.3. � Based on Lemma 2.1, we have the following
theorem.

Theorem 2.2. Let A, E ∈ Rn×n. If A is nonsingular and r = ‖A−1E‖ < 1,
then A + E is nonsingular and ‖(A + E)−1 − A−1‖ ≤ ‖E‖‖A−1‖2/(1− r).

Proof. See [8], Theorem 2.3.4. �

2.2 Generalized Jacobians

Definition 2.3. A mapping f : Rm → Rn is called Lipschitz in a neighbor-
hood of a point x0 in Rn if there exist a constant K such that for all x and y
near x0, we have

‖f(x) − f(y)‖ ≤ K‖x − y‖. (1)

If K ≥ 1 and
1
K

‖x − y‖ ≤ ‖f(x) − f(y)‖ ≤ K‖x − y‖,
then f is called bi-Lipschitz or K-bi-Lipschitz.
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Theorem 2.4. (Rademacher). If f : Rm → Rn is Lipschitz, then f is almost
everywhere differentiable.

Proof. See [4], Theorem 3.1.6. �

The usual m × n Jacobian matrix of partial derivatives of f at x, when it
exists, is denoted by Jf(x). By Rademacher’s theorem, we have the following
definition.

Definition 2.5. (F. H. Clarke - [1],[2] The Generalized Jacobian of f at x0,
denoted by ∂f(x0), is the convex hull of all matrices M of the form

M = lim
i→∞

Jf(xi),

where xi converges to x0 and f is differentiable at xi for each i.
When f : Rn → R, ∂f(x0) is called the generalized gradient of f at x0.

Definition 2.6. ∂f(x0) is said to be of maximal rank if every M in ∂f(x0)
is of maximal rank.

Remark 2.7. From (1), ∂f(x) is bounded in the neighborhood of x0.

Proposition 2.8 ([1]). ∂f(x0) is a nonempty compact convex subset of M.

Lemma 2.9 ([1]). Let ε be a positive number. Then for all x sufficiently near
x0,

∂f(x) ⊂ ∂f(x0) + εM(0, 1).

2.3 Topology of Lipschitz mappings

Let f : Rm → Rn. Then the Lipschitz constant of f is defined by

L(f) = sup
{‖f(x) − f(y)‖

‖x − y‖ , x 	= y

}
.

Note that f is Lipschitz if and only if L(f) < ∞. Set

Lip(Rm, Rn) = {f : L(f) < +∞} .

For f, g ∈ Lip(Rm, Rn) and α ∈ R, we have the following properties:

(i) f + g, αf ∈ Lip(Rm, Rn),

(ii) L(f) ≥ 0,

(iii) L(f + g) ≤ L(f) + L(g),

(iv) L(αf) = αL(f),
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(v) L(f) = 0 ⇔ f = constant.

By (v), for x0 ∈ Rm, set

Lipx0
(Rm, Rn) = {f : f is Lipschitz and f(x0) = 0} .

Then
L(f) = 0 ⇔ f ≡ 0, for all f ∈ Lipx0

(Rm, Rn).

Thus Lipx0
(Rm, Rn) is a normed vector space with the norm L(·).

3 Results - Examples

Applying the results of F. H. Clarke ([1]), perturbation matrix, the properties
of Lipschitz mappings and differentiable mappings, in Theorem 3.1 we present
a quantitative form of the Lipschitz inverse function theorem of F. H. Clarke,
in Theorem 3.5 we give a quantitative form of the Lipschitz implicit function
theorem, openness of the class of Lipschitz mappings satisfying Clarke’s inverse
function theorem is proved in Theorem 3.8 and Corollary 3.10.

We let B denote the unit ball in Rn, and S denote the unit sphere in Rn.

Theorem 3.1 (c.f. [1], Theorem 1). Let f : Rn → Rn be a Lipschitz
mapping with Lipschitz constant K. If ∂f(x0) is of maximal rank, set

δ =
1
2

inf
M0∈∂f(x0)

1
‖M−1

0 ‖ ,

r be chosen so that f satisfies Lipschitz condition (1) and

∂f(x) ⊂ ∂f(x0) + δM(0, 1), when x ∈ B(x0, r),

then there exist neighborhoods U and V of x0 and f(x0), respectively, and a
Lipschitz mapping g : V → Rn such that

(a) g(f(u)) = u for every u ∈ U ,
(b) f(g(v)) = v for every v ∈ V ,

where,

U = B(x0,
rδ

2
.
1
K

), V = B(f(x0),
rδ

2
), and L(g) =

1
δ
.

Proof. First we have:

Lemma 3.2 (c.f. [1], Lemma 3). Let f : Rn → Rn be a Lipschitz mapping,
∂f(x0) has maximal rank, set

δ =
1
2

inf
M0∈∂f(x0)

1
‖M−1

0 ‖ ,



12 Some quantitative results on Lipschitz inverse and ...

r be chosen so that in B(x0, r) f satisfies the Lipschitz condition (1) and
∂f(x) ⊂ ∂f(x0) + δM(0, 1). Then, for every unit vector v in Rn, there exists
a unit vector w in Rn such that, whenever x lies in x0 + rB and M belongs to
∂f(x),

w.(Mv) ≥ δ. (2)

Proof of the lemma: By Proposition 2.8 and ∂f(x0) is of maximal rank, the
subset ∂f(x0)S of Rn is compact and not containing 0. For M0 ∈ ∂f(x0), we
have

min
‖x‖=1

‖M0x‖ =
1

‖M−1
0 ‖ .

Set
δ =

1
2

inf
M0∈∂f(x0)

1
‖M−1

0 ‖ ,

we get ∂f(x0)S distances 2δ from 0.
If M ∈ G = ∂f(x0) + εM(0, 1), then

min
‖x‖=1

‖Mx‖ ≥ min
‖x‖=1

‖M0x‖ − ε.

Choosing

ε = δ =
1
2

inf
M0∈∂f(x0)

1
‖M−1

0 ‖ ,

we get GS distances at least δ from 0. By Lemma 2.9, there exists a positive
number r, such that

x ∈ x0 + rB ⇒ ∂f(x) ⊂ G. (3)

Let r be chosen so that f satisfies (1) on x0 + rB.
Thus, let any unit vector v be given, apply the above results, the convex set
Gv distances at least δ from 0. By the usual separation theorem for convex
sets, there exists a unit vector w such that

w.(γv) ≥ δ,

for every γ ∈ G. Hence, applying (3) we obtain (2).

Proof of the theorem: Using the proof of [1], Theorem 1 to replace [1], Lemma
3 by the preceding lemma.
Estimation of the neighborhood U , V and the Lipschitz constant L(g):
According to the proof of [1], Theorem 1, we have

L(g) =
1
δ
,

V = f(x0) + (rδ/2)B = B
(

f(x0),
rδ

2

)
,
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and choose U being an arbitrary neighborhood of x0 and satisfying f(U) ⊂ V .
Then for all x ∈ U we have

‖f(x) − f(x0)‖ ≤ K‖x − x0‖ ≤ rδ

2
.

Hence,

‖x − x0‖ ≤ rδ

2
1
K

.

So

U = B
(

x0,
rδ

2
1
K

)
.

�

Remark 3.3. When f is C1, ∂f(x0) reduces to Jf(x0), and g is in the class
C1. Thus we get the quantitative form of the classical inverse function theorem.

Remark 3.4. If F : A → Rn be a Lipschitz mapping in a neighborhood of
(x0, y0), A = U×V be a open subset of Rm×Rn, then the generalized Jacobian
of F at (x0, y0) satisfies

∂F (x0, y0) ⊂
{(

M1 M2

)
: M1 ∈ ∂1F (x0, y0), M2 ∈ ∂2F (x0, y0)

}
,

where ∂1F (x0, y0) and ∂2F (x0, y0) are generalized Jacobians of F (·, y0) : U →
Rn and F (x0, ·) : U → Rn at (x0, y0), respectively.

Theorem 3.5. Let F : A → Rn be a Lipschitz mapping in a neighborhood of
(x0, y0) with Lipschitz constant K, A = U × V be a open subset of Rm × Rn.
Suppose that ∂2F (x0, y0) is of maximal rank, F (x0, y0) = 0, set

δ =
1
2

inf
M2∈∂2F (x0,y0)

1
(m + (1 + mK2)n‖M−1

2 ‖2)
1
2
,

r be chosen so that F satisfies Lipschitz condition (1) and

∂F (x, y) ⊂ ∂F (x0, y0) + δM(0, 1), when (x, y) ∈ B((x0, yo), r).

Then there exist a Lipschitz mapping g : U0 → V defined in a neighborhood
U0 ⊂ Rm of x0 such that g(x0) = y0 and

F (x, g(x)) = 0,

for all x ∈ U0.
Moreover,

U0 = B
(

x0,
rδ

2
1

K + 1

)
, and L(g) ≤ sup

M2∈∂2F (x0,y0)

K‖M−1
2 ‖.
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Proof.
1. Set f(x, y) = (x, F (x, y)), for all (x, y) ∈ U × V . Since F is Lipschitz,
according to Radamacher’s theorem, there exists the generalized Jacobian of F
at (x0, y0). In a neighborhood of (x0, y0), F is almost everywhere differentiable,
therefore existing generalized Jacobian of f at (x0, y0) and

∂f(x0 , y0) ⊂
{(

Im 0
M1 M2

)
: M1 ∈ ∂1F (x0, y0), M2 ∈ ∂2F (x0, y0)

}
.

Then ∂f(x0, y0) is of maximal rank, because ∂2F (x0, y0) is of maximal rank.

2. For M =
(

Im 0
M1 M2

)
∈ ∂f(x0 , y0),

M−1 =
(

Im 0
−M−1

2 M1 M−1
2

)
.

Therefore, we have

‖M−1‖ ≤ ‖M−1‖F =
(
m + ‖M−1

2 M1‖2
F + ‖M−1

2 ‖2
F

) 1
2

≤ (
m + ‖M−1

2 ‖2
F (‖M1‖2

F + 1)
) 1

2

≤ (
m + ‖M−1

2 ‖2
F (m‖M1‖2 + 1)

) 1
2

≤ (
m + (1 + mK2)‖M−1

2 ‖2
F

) 1
2 .

Thus

1
‖M−1‖ ≥ 1(

m + (1 + mK2)‖M−1
2 ‖2

F

) 1
2
≥ 1(

m + (1 + mK2)n‖M−1
2 ‖2

) 1
2
.

Set
Δ =

1
2

inf
M∈∂f(x0,y0)

1
‖M−1‖ ,

we get
Δ ≥ δ. (4)

3. According to the theorem, we have

∂F (x, y) ⊂ ∂F (x0, y0) + δM(0, 1), when (x, y) ∈ B((x0, yo), r),

by (4), we get

∂F (x, y) ⊂ ∂F (x0, y0) + ΔM(0, 1), when (x, y) ∈ B((x0, yo), r).

Therefore, we can chose r so that f satisfies Lipschitz condition (1) and

∂f(x, y) ⊂ ∂f(x0 , y0) + ΔM(0, 1), when (x, y) ∈ B((x0, yo), r).
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4. Since F is a Lipschitz mapping with coefficient K, f is Lipschitz with
coefficient K + 1. Applying Theorem 3.1, f is locally invertible and

f−1(x, z) = (x, h(x, z)),

with h is a Lipschitz mapping. Define

g(x) = h(x, 0).

Then g is Lipschitz and

(x, F (x, g(x))) = f(x, g(x)) = f(x, h(x, 0)) = f(f−1(x, 0)) = (x, 0).

This indicates the existence of g satisfying the requirements of the theorem.

5. Estimation of the neighborhood U0 of x0 and L(g):
Applying Theorem 3.1, we obtain

(x, h(x, z)) ∈ U = B
(

(x0, y0),
rΔ
2

1
k + 1

)
.

Thus

(x, g(x)) ∈ U ′ = B
(

(x0, 0),
rΔ
2

1
k + 1

)
.

Hence, by (4), the theorem is satisfied for all (x, g(x)) ∈ U ′′ = B
(
(x0, 0), rδ

2
1

k+1

)
.

Projecting U ′′ onto the space Rm, we get

U0 = B
(

x0,
rδ

2
1

k + 1

)
.

Moreover, applying the formula of implicit function derivative,

Dg = −∂F−1

∂y
.
∂F

∂x
, whenever

∂F−1

∂y
.
∂F

∂x
exist.

Therefore, we get
L(g) ≤ sup

M2∈∂2F (x0,y0)

K‖M−1
2 ‖.

�

Remark 3.6. When F is C1, ∂2F (x0, y0) reduces to J2F (x0, y0), and g is
in the class C1. Thus we get the quantitative form of the classical implicit
function theorem.
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Example 3.7. For m = 1, n = 2, consider F (x, y, z) = (2x + |y| + 3y, 2x +
|z| + 3z) in B ((0, 0, 0), 1). Then

‖F (x, y, z)− F (x′, y′, z′)‖ ≤
√

24‖(x, y, z) − (x′, y′, z′)‖.

Thus F is Lipschitz with Lipschitz constant K =
√

24.
We have

J2F (xi, yi, zi) =

( |yi|
yi

+ 3 0
0 |zi|

zi
+ 3

)
, (xi, yi, zi) near (0, 0, 0).

Hence,

∂2F (0, 0, 0) =
{(

s + 3 0
0 t + 3

)
: −1 ≤ s ≤ 1,−1 ≤ t ≤ 1

}
,

and ∂2F (0, 0, 0) is of maximal rank.
Let M2 ∈ ∂2F (0, 0, 0). Then there exist M−1

2 defined by

M−1
2 =

( 1
s+3 0
0 1

t+3

)
.

So

δ =
1
2

inf
M2∈∂2F (x0,y0)

1
(m + (1 + mK2)n‖M−1

2 ‖2)
1
2

=
1√
54

.

By the preceding theorem, there exist a Lipschitz mapping g such that g(0) =
(0, 0) and

F (x, g(x)) = (0, 0), for all x ∈ U0.

Moreover, for (x, y, z) near (0, 0, 0), we have

JF (x, y, z) =

(
2 |y|

y + 3 0
2 0 |z|

z + 3

)
.

We can chose r = 1, and then

∂F (x, y, z) ⊂ ∂F (0, 0, 0) +
1√
54

M(0, 1), every (x, y, z) ∈ B((0, 0, 0), r).

Hence, we obtain

U0 = B

(
0,

1
6
√

6
· 1
1 + 2

√
6

)
, and L(g) ≤ √

6.
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Theorem 3.8. Let f0 : Rn → Rn be a Lipschitz mapping in the neighborhood
of x0 so that ∂f0(x0) is of maximal rank and satisfies

K‖x − y‖ ≤ ‖f0(x) − f0(y)‖ ≤ K′‖x − y‖.

Let f = f0 + h, with h : Rn → Rn is a Lipschitz mapping with Lipschitz
constant L so that

L < K.

Set
δ =

1
2

inf
M0∈∂f(x0)

1
‖M−1

0 ‖ .

Suppose that r was chosen so that f satisfies Lipschitz condition (1) and
∂f(x) ⊂ ∂f(x0)+ δM(0, 1) in B(x0, r). Then there exist neighborhoods U and
V of x0 and f(x0), respectively, and a Lipschitz mapping g : V → Rn such that

(a) g(f(u)) = u for every u ∈ U ,

(b) f(g(v)) = v for every v ∈ V .
Moreover, U, V and L(g) are determined by

U = B
(

x0,
rδ

2
1

K′ + L

)
, V = B

(
f(x0),

rδ

2

)
, and L(g) =

1
δ
.

Proof.
Remark : f is differentiable at xi if and only if f can be approximated in a
neighborhood of xi by the affine mapping

T (x) = f(xi) + Jf(xi)(x − xi).

Hence,

K‖x − xi‖ ≤ ‖f(x) − f(xi)‖ ≈ ‖Jf(xi)(x − xi)‖ ≤ K′‖x − xi‖.

From which we obtain

K ≤ inf
y �=0

‖Jf(xi)y‖
‖y‖ , ∀Jf(xi) ⇒ K ≤ inf

Jf(xi)

(
min
‖x‖=1

‖Jf(xi)x‖
)

, (5)

supy �=0
‖Jf(xi)y‖

‖y‖ ≤ K′, ∀Jf(xi) ⇒ supJf(xi)

(
max‖x‖=1 ‖Jf(xi)x‖

) ≤ K′

⇒ supJf(xi) ‖Jf(xi)‖ ≤ K′.
(6)

From the remarks above we will prove that f is a Lipschitz mapping and ∂f(x0)
is of maximal rank.
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We have

‖f(x) − f(y)‖ = ‖(f0(x) − f0(y)) + (h(x) − h(y))‖
≤ ‖(f0(x) − f0(y))‖ + ‖(h(x) − h(y))‖
≤ (K′ + L)‖x − y‖.

So f is Lipschitzian with Lipschitz constant K′ + L.

According to Rademacher’s theorem, f is almost everywhere differentiable near
x0, so that the general Jacobian ∂f(x0) exits. Moreover,

∂f(x0) ⊂ ∂f0(x0) + ∂h(x0).

Indeed, let E be the set of points where f0 or h is fail to be differentiable. Then
every M ∈ ∂f(x0), M has the form

M = lim
i→∞

J(f0 + h)(x0 + hi), hi → 0 when i → ∞,

here the sequence {x0 + hi} lies in the complement of E, and admits a subse-
quence {x0 + hni} such that Jf0(x0 + hni) and Jh(x0 + hni) both exist and
converge. Hence

M = lim
i→∞

Jf0(x0 + hni) + lim
i→∞

Jh(x0 + hni) = M0 + H,

where M0 ∈ ∂f0(x0), H ∈ ∂h(x0).

Next, we prove ∂f(x0) is of maximal rank:
Using (5) and (6) we have

L < K ⇒ supH∈∂h(x0) ‖H‖ < infM0∈∂f0(x0)

(
min‖x‖=1 ‖M0x‖

)
⇒ supH∈∂h(x0) ‖H‖ < infM0∈∂f0(x0)

(
1
1

min‖x‖=1 ‖M0x‖

)
⇒ supH∈∂h(x0) ‖H‖ < 1

supM0∈∂f0(x0)

(
1

min‖x‖=1 ‖M0x‖

)
⇒ supH∈∂h(x0) ‖H‖ < 1

supM0∈∂f0(x0) ‖M−1
0 ‖ ,

so we get

sup
H∈∂h(x0),M0∈∂f0(x0)

‖M−1
0 H‖ < 1.

According to Theorem 2.2, M0+H is of maximal rank for all H ∈ ∂h(x0), M0 ∈
∂f0(x0).
According to the proof above, if M ∈ ∂f(x0) then M = M0 + H , with M0 ∈
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∂f0(x0), H ∈ ∂h(x0). Hence, M is of maximal rank for every M ∈ ∂f(x0).
So ∂f(x0) is of maximal rank.

Thus f is Lipschitz and ∂f(x0) is of maximal rank, applying Theorem 3.1, we
get the results of the theorem.

Moreover, according to the proof of Theorem 3.1, we have

L(g) =
1
δ
, V = f(x0) + (rδ/2)B = B

(
f(x0),

rδ

2

)
,

and choose U being an arbitrary neighborhood of x0 and satisfying f(U) ⊂ V .
Then for all x ∈ U we have

‖f(x) − f(x0)‖ ≤ (K′ + L)‖x − x0‖ ≤ rδ

2
.

Hence,

‖x − x0‖ ≤ rδ

2
1

K′ + L
.

So

U = B
(

x0,
rδ

2
1

K′ + L

)
.

�

Remark 3.9. If L > K, then f = f0 + h may not satisfy local invertible
condition.

Corollary 3.10. The class of Lipschitz mappings satisfying Clarke’s inverse
function theorem is open in the space Lipx0

(Rm, Rn).

Example 3.11. For n = 2, consider f0(x, y) = (|x|+2x, |y|+2y) in B ((0, 0), 1).
We have

Jf0(xi, yi) =

( |xi|
xi

+ 2 0
0 |yi|

yi
+ 2

)
, (xi, yi) near (0, 0).

Thus

∂f0(0, 0) =
{(

s + 2 0
0 t + 2

)
: −1 ≤ s ≤ 1,−1 ≤ t ≤ 1

}
,

and ∂f0(0, 0) is of maximal rank.
We have

‖f0(x, y) − f0(x′, y′)‖ = ‖(|x|+ 2x, |y|+ 2y) − (|x′| + 2x′, |y′| + 2y′)‖
= ‖((|x| − |x′|) + 2(x − x′), (|y| − |y′|) + 2(y − y′))‖.
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Hence,

‖(x, y) − (x′, y′)‖ ≤ ‖f0(x, y) − f0(x′, y′)‖ ≤ 3‖(x, y) − (x′, y′)‖.
Thus, f0 is Lipschitz with Lipschitz constants K = 1, K′ = 3.

1. Case L < K. We find h(x, y) = (1
2 |x|, 1

2 |y|) is Lipschitz with Lipschitz
constant L = 1

2 satisfying
L < K.

Set f = f0 + h, we have

f(x, y) = (
3
2
|x|+ 2|x|, 3

2
|y| + 2y),

and f is Lipschitz in B ((0, 0), 1) with Lipschitz constant 7
2 .

Then,

Jf(xi, yi) =

(
3
2
|xi|
xi

+ 2 0
0 3

2
|yi|
yi

+ 2

)
, (xi, yi) near (0, 0),

∂f(0, 0) =
{(

s + 2 0
0 t + 2

)
: −3

2
≤ s ≤ 3

2
,−3

2
≤ t ≤ 3

2

}
,

and ∂f(0, 0) is of maximal rank.
So f = f0 + h is locally invertible.
We have

δ =
1
2

inf
M0∈∂f(x0)

1
‖M−1

0 ‖ = 1.

Moreover,

Jf(x, y) =

(
3
2
|x|
x

+ 2 0
0 3

2
|y|
y

+ 2

)
, (x, y) ∈ B ((0, 0), r) , r ≤ 1.

We can chose r = 1, and then

∂f(x, y) ⊂ ∂f(0, 0) + M(0, 1), when (x, y) ∈ B ((0, 0), r) .

Hence, we obtain

U = B
(

(0, 0),
1
7

)
, V = B

(
(0, 0),

1
2

)
, and L(g) = 1.

2. Case L > K. We find h(x, y) = (3
2 |x|, 3

2 |y|) is Lipschitz with Lipschitz
constant L = 3

2 > K. Set f = f0 + h, we have

f(x, y) = (
5
2
|x|+ 2x,

5
2
|y| + 2y),
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and f is Lipschitz with Lipschitz constant 9
2
.

Then,

Jf(xi, yi) =

(
5
2
|xi|
xi

+ 2 0
0 5

2
|yi|
yi

+ 2

)
, (xi, yi) near (0, 0),

∂f(0, 0) =
{(

s + 2 0
0 t + 2

)
: −5

2
≤ s ≤ 5

2
,−5

2
≤ t ≤ 5

2

}
,

and ∂f(0, 0) is not of maximal rank.
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