*-QUASIIDEALS IN INVOLUTION SEMIGROUPS

Usama A. Aburawash and Allam A. Allam

Department of Mathematics Faculty of Science-P.O.Box 21511 Alexandria University, Alexandria, Egypt e-mail:aburawash@alex-sci.edu.eg

Abstract

Let S be an involution semigroup. Then every *-minimal *-quasiideal of S is a minimal *-quasiideal of S. Nevertheless, if S possesses a primitive idempotent e then the *-quasiideal eSe^* (e^*Se) is minimal if and only if it is a (von Neumann) regular *-subsemigroup. Furthermore, S is *-simple if and only if it is simple. Finally, if S has a minimal *-quasiideal then it has a completely simple kernel K and the minimal *-quasiideals of S are just the *-maximal *-subgroups of K.

1. Introduction

Here, we consider only semigroups; that is a nonempty set S with an associative binary operation. An idempotent element f of S is called *primitive* if for every idempotent element $e \in S$, the relation ef = fe = e implies f = e. An element $a \in S$ is *regular*, in the sense of von Neumann, if $a \in aSa$.

A semigroup S is said to be simple if S is the only ideal of S. A completely simple semigroup S is a simple semigroup possessing primitive idempotent. If the intersection K of all ideals of S is nonempty, then K is the unique minimal ideal of S and is called the *kernel* of S (see [5]).

A quasiideal Q of S is a nonempty subset of S satisfying $QS \cap SQ \subseteq Q$. Since $Q^2 \subseteq QS \cap SQ \subseteq Q$, it follows that the quasiideal Q is a subsemigroup of S. A quasiideal Q of S is said to be a *minimal quasiideal* if Q does not properly

Key words: completely semigroup, quasiideal, minmal quasiideal, involution group. 2000 AMS Mathematics Subject Classification: 20M17, 20M99

contain any quasiideal of S. However, the notion of quasiideal for semigroups was introduced by O. Steinfeld in [4]. For more details we refer to [5].

The following well known results will be essential in proving our results.

Proposition 1.1 ([5], Proposition 2.3). The intersection of a right ideal and a left ideal of a semigroup S is a quasiideal of S.

Proposition 1.2 ([5], Proposition 2.5). Let e be an idempotent element of a semigroup S. If L (resp. R) is a left (resp. right) ideal of S, then eL (resp. Re) is a quasiideal of S.

Proposition 1.3 ([5], Proposition 5.3). A quasiideal Q of a semigroup S is minimal if and only if Q is a subgroup of S.

Proposition 1.4 ([5], Proposition 10.4). Let e be a primitive idempotent element of a semigroup S. If a is a regular element contained in the left (resp. right) ideal Se (resp. eS), then Sa = Se (resp. aS = eS).

2. Semigroups with involution

A semigroup S is said to be an *involution semigroup* or a *-semigroup if there is defined a unary operation (called *involution*) * on S subject to the identities $a^{**} = a$ and $(ab)^* = b^*a^*$, for all $a, b \in A$. If S is commutative, then it has at least on involution; namely, the identity mapping of S onto S.

A *-quasiideal (resp. *-ideal) Q of S will mean a quasiideal (resp. ideal) Q closed under involution; that is $Q^* = \{a^* \in S \mid a \in Q\} \subseteq Q$. A *-quasiideal Q of S is said to be *-minimal if Q does not properly contain any *-quasiideal of S. Similarly, a *-ideal I of S is *-minimal if I does not properly contain any *-ideal of S (see[3] or [1]).

If the intersection K_* of all *-ideals of S is nonempty, then K_* is the unique *-minimal *-ideal of S and is called the *-*kernel* of S. It is evident that $K \subseteq K_*$. An involution semigroup S is said to be *-simple if the only *-ideal of S is S itself.

First, we prove the involutive version of a well known result in semigroups without involution.

Proposition 2.1 A^* -semigroup S is a *-group if and only if S has no proper *-quasiideal.

Proof If Q is a *-quasiideal of the *-group S, then $S = QS \cap SQ \subseteq Q$ and S = Q follows. Thus S has no proper *-quasiideal. Conversely, assume that S

is a *-semigroup having no proper *-quasiideal. For every $a \in S$, the subsets aS and Sa^* are right and left ideals of S, respectively, whence they are quasiideals of S. By Proposition 1.1, $Q = aS \cap Sa^*$ is a nonempty *-quasiideal of S because $aa^* \in Q$. Thus Q = S and consequently $S \subseteq aS$ which implies S = aS. By the same argument, $a^*S \cap Sa$ is a nonempty *-quasiideal of S and again S = Sa. Therefore S = aS = Sa, which implies that S is a *-group.

It is evident that a minimal *-quasiideal of an involution semigroup S is *-minimal. The next theorem gives an unexpected result; the converse is also true. First we need the following auxiliary lemma.

Lemma 2.2 Let Q be a *-minimal *-quasiideal of an involution semigroup S and let $a \in Q$. Then $Q = a^*S \cap Sa$. Moreover, if a is an idemptent element then $a = a^*$ is the identity for Q and Q = aSa is a group.

Proof For every element $a \in S$, $a^*S \cap Sa$ is a quasiideal of S, by Proposition 1.1, and it is nonempty because it contains a^*a . Moreover, it is a *-quasi ideal of S. Let Q be a *-minimal *-quasiideal of S, and let $a \in Q$, then $a^* \in Q$ and so $a^*S \cap Sa \subseteq Q$. Hence, $a^*S \cap Sa = Q$, by the minimality of Q. If a is an idempotent, a^* is an idempotent, too. By $a^*S \cap Sa = Q$, it follows that a^* and a are left and right identities of Q, respectively and so they coincide and a is the identity of Q. Hence $aSa \subseteq aS \cap Sa = Q$. For any $q \in Q$, q = ax for some $x \in S$ and q = qa because a is the identity of Q, so $q = qa = axa \in aSa$, whence Q = aSa. Now we prove that q has a left inverse in Q, namely we know that $q^*S \cap Sq = Q$ and so a = yq for some $y \in Q$.

Theorem 2.3 Every *-minimal *-quasiideal Q of an involution semigroup S is a minimal *-quasiideal of S and vice versa.

Proof Let Q be a *-minimal *-quasiideal of an involution semigroup S and let $a \in Q$, then a^* , $aa^* \in Q$. By Lemma 2.2, $aa^*S \cap Saa^* = Q$, whence $a = aa^*r$ and $a^* = taa^*$ for some $r, t \in S$. Now $ta = taa^*r = a^*r$, whence ta = tata is an idempotent e of Q. So Q = eQe is a subgroup of S, and consequently a minimal quasiideal, according to Proposition 1.3. The converse is obvious. \Box

Now, we show that if S has a kernel or a *-kernel, then they are coincident.

Proposition 2.4 If the involution semigroup S has a kernel K or a *-kernel K_* , then $K = K_*$.

Proof Since $K \cap K^*$ is a nonempty *-ideal of S, then $K \cap K^* = K$ and $K \cap K^* = K_*$, whence $K_* = K$.

Finally, we give a necessary and sufficient condition for a particular *quasiideal to be minimal. **Proposition 2.5** Let S be an involution semigroup and possessing a primitive idempotent e. Then the *-quasiideal $eSe^*(e^*Se)$ is minimal if and only if it is a regular subsemigroup.

Proof Clearly eSe^* is a nonempty *-quasiideal. Assume first that eSe^* is minimal, then by Proposition 1.3, $eSe^* = G$ is a *-subgroup. Hence for every element $g \in G$, we have G = gGg, that is g is regular and so is $G = eSe^*$. For sufficiency, let eSe^* be a regular subsemigroup and Q be a quasiideal of S such that $Q \subseteq eSe^*$. Since e and e^* are idempotents and each element $a \in Q \subseteq eSe^* \subseteq eS \cap Se^*$ is regular, hence, by Proposition 1.4, eS = aS and $Se^* = Sa$. Therefore $eSe^* \subseteq eS \cap Se^* = aS \cap Sa \subseteq Q$, whence $Q = eSe^*$ and consequently eSe^* is minimal.

3. *-Simple Semigroups with involution

We show first that a *-simple involution semigroup S is simple. However, this result is not true for involution semigroups with 0 (see [2]).

Theorem 3.1 An involution semigroup S is *-simple if and only if it is simple.

Proof If S is *-simple and $K \triangleleft S$ then $K^* \triangleleft S$ and $K \cap K^*$ is a nonempty *-ideal of S, since $KK^* \subseteq K \cap K^*$. From the*-simplicity of S, it follows that $K \cap K^* = S$. Thus K = S and S is simple. The converse is obvious.

Finally, we give the involutive version of Theorem 5.14 in [5].

Theorem 3.2 If the involution semigroup S has a minimal *-quasiideal, then it has a completely simple kernel K. Furthermore, the minimal *-quasiideals of S are just the *-maximal *-subgroups of K.

Proof The first statement follows immediately from Theorem 5.14 in [5]. Again, by Theorem 5.14 in [5], every minimal *-quasiideal of S is a maximal *-subgroups of K, which is clearly *-maximal. Moreover, a -maximal *-subgroup of K is a minimal *-quasiideal of S, by Proposition 1.3. Nevertheless, if T is not a *-maximal *-subgroup of K, then T is not a maximal *-quasiideal of S, whence by Theorem 5.14 in [5], T is not a minimal *-quasiideal of S. \Box

References

- U. A. Aburawash, On involution rings, East-West J. Math., 2(2) (2000), 109-126.
- [2] U. A. Aburawash and R. Wiegandt, The Rees and Steinfeld Theorem for semigroups with involution, Semigroup Forum, 57(1998), 440-444.

- [3] G. F. Birkenmeier, N. J. Groenewald and H. E. Heatherly, *Minimal and maximal ideals in rings with involution*, Beiträge zur Algebra and Geometrie, **38** (1997), 217-225.
- [4] O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debecen, 4 (1956), 262-275.
- [5] O. Steinfeld, "Quasi-ideals in rings and semigroups", Akad. Kiadó, 1978.