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Abstract

The generalized tribonacci p-numbers (p € N), which generalizes the
tribonacci numbers, are integers satisfying

Ty(n+2)=Tp(n+1)+Tp(n)+ Tp(n —p).

We construct the companion matrix for the generalized tribonacci p-
numbers and derive some interesting identities. Several explicit formulas
for the tribonacci p-numbers are also derived using the tribonacci p-
triangle.

1 Introduction

As is well known, the sequences of Fibonacci numbers {F,}5° , and tribonacci
numbers {7}, }2° , are defined, respectively, by

Fn+1:Fn+Fn—1; FOZO; P11:1
Tn+2:Tn+1+Tn+Tn—la TO:Oa Th =15 =1.

In 1963, Alladi and Hoggatt [1] constructed the tribonacci triangle, see
Figure 1, and used it to derive some interesting formulas involving tribonacci
numbers.
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0 1 2 3 4 5 6 7
0|1
171 1
211 3 1
311 5 5 1
411 7 13 7 1
511 9 25 25 9 1
61 11 41 63 41 11 1
711 13 61 129 129 61 13 1

Figure 1 : Tribonacci triangle

Denoting by B(n,) the element in the nth row and ith column of the tri-
bonacci triangle, they showed that the sum of elements on the rising diagonals
in the tribonacci triangle is a tribonacci number (see also [5, Chapter 46]), i.e

[n/2]

=0

Since B(n,i) can be written as binomial sums ([2, example 16]), we can

rewrite (1) as
Toir = LRE/SHHEZM()(”_“"), @)

=0 4=0

which is a known identity ([7], [8], [9]).

A good deal of identities involving elements satisfying linear recurrence
sequences are often conveniently derived through matrix representation. For
example, the generating matrix of the tribonacci numbers is given by ([3], [9])

1 1 11" [Ther To+Tow Ty
A"=11 0 0f =T, Tho1+Tho Th
010 Tn—l Tn—2 + Tn—3 Tn—2

One of the most interesting generalizations of the Fibonacci numbers is
given by Stakhov [10], called the Fibonacci p-numbers F,(n), defined for p € N
by

Fp(n) = Fp(n—1)+ Fp(n—p—1) (n>p) 3)

with initial conditions Fj,(0) = 0 and F,(1) = F,(2) = Fo(p) = 1.
Stakhov [10] also constructed the (p+1) x (p+ 1) companion matrix of the
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Fibonacci p-numbers as

1 0 0 0 1
1 0 0 0 0
0 1 0 0 0
Qp: . . . .
0 - 0 1 0 0
0 0 - 0 1 0

It is not difficult to verify that the nth power of the matrix @, is

Fyp(n+1) Fyn—p+1) - Fy(n—1) Fy(n)
Fy(n) Fp(n —p) Fy(n —2) Fy(n—1)
Q; = z z z ; ,
Fp(n—p+2) Fy(n—2p+2) --- Fp(n —p) Fp(n—p+1)
Fp(n—p+1) F,(n—2p+1) --- Fy(n—p-—1) Fp(n—p)

(4)
which leads us to refer to (), as a generalized Fibonacci p-matrix. For futher
properties of the Fibonacci p-numbers, we refer to [4] and [10]-[11].

Our first objective here is to introduce the notion of tribonacci p-numbers,
which generalizes that of Fibonacci p-numbers.

Definition 1. Let p € N. The tribonacci p-numbers T,,(n) are defined by
T,(n+2)=Ty(n+1)+ Tp(n) +Tp(n —p) (n ez,
where T,(1) =1 and T,(i) = 0 for —p <1 < 0.

If p = 1, then the tribonacci p-numbers T,(n) become the classical tri-
bonacci numbers T;,.

The following table displays the first thirteen tribonacci p-numbers for p =
1,2,3,4.

n O(1(23[4]5|6 | 7| 8|9 10 | 11 12
T, 0|1 |1(2]|4 7|13 |24 |44 | 81| 149 | 274 | 504
To(n) {01123 |6|10|18 |31 |55]| 96 | 169 | 296
Ts(n) {01123 |5|9 |15|26|44| 75 | 128 | 218
Ta(n) |01 | 1|23 |5| 8 |14|23|39]| 65 | 109 | 182

Table 1

It is easy to see that T,(i) = F; for 0 < ¢ < p + 2, where F,, is the nth
Fibonacci number.

We proceed next to construct a tribonacci p-matrix for tribonacci p-numbers
and derive some identities of these numbers. We then construct the tribonacci
p-triangle which generalizes the tribonacci triangle and employ it to derive an
explicit formula for the tribonacci p-numbers.
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2 Tribonacci p-matrix

Definition 2. For p € N, a tribonacci p-matriz, denoted by Ay, is the (p +
2) x (p+ 2) matriz whose elements a;; are given by

a1 =ai2=a1pt2=1, ai;—1=1 (2<i<p+2) and 0 otherwise, i.e.,

1 1 0 0 1

1 0 0

0 1 0 0 0
A, =

0 --- 0 1 0 0

0o 0 - 0 1 0

We define a (p +2) x (p + 2) matrix B, similar to the right-hand side of
(4), by

Tp(n+1) Tp(n) + Tp(n —p) Tp(n—p+1) - Tp(n)
Tp(n) Tp(n—1)+Tp(n—p—1) Tp(n —p) Tp(n —1)
B, = Tp(n —1) Tp(n—2)+Tp(n—p—2) Tp(n—p—1) - Tp(n —2)
Tyn—p) Tpn—p—1)+Tpn—2p—1) Tpn—2p) - Tp(n—p—1)

Motivated by the identity (4), we state and prove one of our main results.
Theorem 1. Let p € N. We have
Ay =B, (neN).

Proof. We prove by induction on n. It is easy to see that By = A,. Assume
A;} = B,, holds for some n > 1. By our assumption, we write

+1 _ _
Ay = ALA = B Ay,
From the matrix multiplication and the definition of the generalized tribonacci
p-numbers, we have By, 1 = B, A,. Hence A7t = B4y, O
Since AZJ”” = A} A}, equating the (1, 1)—entry on both sides of this matrix
equation, we obtain the following corollary.
Corollary 1. For m,n € N, we have

T,(n+m+1) = Tp(n—|—1)Tp(m—|—1)+Tp(n)Tp(m)+i Ty (n—p+i)T,(m—1). (5)
i=0
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Taking m = n and m = n — 1 in Corollary 1, we respectively get

T,2n+1) = Tg(n +1)+ Tg(n) + iTp(n —p+i)T,(n —1) (6)
1=0
and
T,(2n) = Tp(n+ 1Ty (n) + Tp(n)Ty(n—1)+ > _ Tp(n—p+i)Tp(n—i—1). (7)
1=0

Taking p =1 in (5), (6) and (7), we respectively get ([6, page 461])
Tn+m+1 - Tn+1Tm+1 + TnTm + Tn—le + TnTm—la

Tony1 = Topy + T2 + 2T, 1Ty

and
T2n = Tn+1Tn + TnTn—l + Tg_l + TnTn—Q-

Generalizing Theorem 1 further, we define the (p + 3) x (p + 3) matrices C),
and D, (n € N) by

1 0 0 0
o0 0.
Sp(n—1
Cp = 0 Ap and D,, = SZ(n_Q) B, ,
’ [Sp(n—p+1) i

where
n

Sp(n) = _Tp(i) for n >0 and S,(k) =0 for k < 0.
1=0

We now give an extension of theorem 1.

Theorem 2. Let p € N. We have
Cy =D, (neN).

Proof. We prove by induction on n. Clearly, D1 = Cp. Now, assume C}' = D),
for some n > 1. From the definition of S,(n), we can write

Sp(n+1) = S,(n) + Ty(n + 1).

Using A? = B,,, matrix multiplication and inductive hypothesis, we get D,, 11 =
D,C, = C}t1. So the proof is complete. O
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Theorem 2 gives
Dpym = Cpt™ = CCy = Dy Dy,

which, by equating the (2,1)—entry of both sides, yields an extension of [3,
Corollary 1].

Corollary 2. For all n,m € N, we have

Sp(n+m) = Sp(n)+Ty (n+1)Sy (m)+T; (1) Sy (m—1)+Y _ Tp(n—p+i)Sp (m—i—1).
1=0

Taking m = n and m = n + 1 in Corollary 2, we respectively get

Sp(2n) = Sp(n)+T;(n+1)S,(n) + T, (n)Sp(n—1)+ Y Tp(n—p+i)S, (n—i—1)
1=0
and
Sp(2n+1) = Sy (n) +Tp(n+1)Sp(n+1)+ T, (n)Sp(n)+ Y Tp(n—p+i)Sp(n—i).
1=0

Taking n = 1 in Corollary 2, we get an extension of [3, Lemma 1] as
Sp(m +1) = 1+ S, (m) + S, (m — 1) + Sy(m —p — 1),

which is equivalent to

T,(m+1)=14+2S,(m—1)— iTp(m —1).

i=1
This yields the following corollary.

Corollary 3. For n € N, we have

Sy(n—1) = % (Tp(n+1)_1+§pij(n—i)> .

i=1
For p =1, Corollary 3 yields

n—1

1
Y. Ti=5 T+ T = 1),
=0

which is a formula found in [3, Theorem 2].
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3 Tribonacci p-triangle

In this last section, we introduce the tribonacci p-triangle. We start with the
following definition.

Definition 3. Let p € N and n,i two non-negative integers. Define

1 ifi=0,n,
By(n,i)=¢ 0 if i > n,
By(n—1,i) +By(n—1,i— 1)+ Bp(n—p—1,i—1) ifl<i<n.

Now we are ready to introduce the main object of this section.

Definition 4. The tribonacct p-triangle is an array of numbers defined by

0 1 2 3 4 n
0 | B»(0,0)
1 Bp(l,()) Bp(l7 l)
2 BP(Q,O) B;,,(Q7 l) B;,,(Q7 2)
3 | Bp(3,0) Bp(3,1) By(3,2) Bp(3,3)
4 | By (47 O) B, (47 l) B, (47 2) B, (47 3) B, (47 4)
n | Bp(n,0) Bp(n,1) Bp(n,2) e By(n,n)

When p = 1, we see that the tribonacci 1-triangle is indeed the tribonacci
triangle (Figure 1). The tribonacci p-triangles for p = 2,3 are given by

0 1 2 3 4 5 6 0 1 2 3 4 5 6
0|1 011
1|1 1 111 1
211 2 1 211 2 1
311 4 3 1 311 3 3 1
411 6 8 4 1 411 5 6 4 1
511 8 16 13 5 1 511 7 12 10 5 1
61 10 28 32 19 1 611 9 21 23 15 6 1
tribonacci 2-triangle tribonacci 3-triangle

Observe that sums of elements on each rising diagonal in the tribonacci
2-triangle, and tribonacci 3-triangle seem to give the tribonacci 2-numbers
T5(n), and tribonacci 3-numbers T3(n), respectively. The following table pro-
vides some more information.
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n Ta(n) T5(n)

1 1 1

2 1 1

3 141=2 141=2

4 142=3 142=3

5 144+1=6 1+34+1=5

6 1+64-3=10 1+543=9

7 1+84-8+1=18 1+74+6+1=15

8 14+104-16+4=31 14+9+1244=26

9 | 1+12428+41341=55 | 1+114+21+104+1=44

We proceed now to show that the sum of elements on each rising diagonal
in the tribonacci p-triangle is equal to the tribonacci p-numbers T, (n).

Table 2

need the following lemma.

Lemma 1. Let p € N and n a non-negative integer. Then

Bp(n7 Z) =
7=0

>

()

Proof. We prove by induction on n. The identity (8) clearly holds when n = 0.
Assume (8) is true for n > 0 and 0 < 4 < n. By Definition 3 and the inductive
hypothesis, we get

1)+ Bp(n—p,i—1)

Bp(n+1,i) = By(n,i) + By(n,i — |
(500
()£

5005050
)00 (2)-E06)
SENCT )

J J:
n+1\ i\ (n—pj+1 —pi+1
()2 G0
i — \J i i

Then (8) holds for n + 1, thereby proving the lemma. O
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Since all the terms in the summation of By (n, i) are zero when j > min{ ";1 yi}s
the identity (8) can be rewritten as

B S (1)("7) .

We are now ready to verify our identity.
Theorem 3. Let p € N and n € NU{0}. Then
[n/2]
(n+1) Z B,(n —i,1) (10)

Proof. For 0 <1 <n <p+1, since

Bp(n_i’”:g (2) (n—ii—pj> _ (nl—l>

we get
ln/2] /2l o
ZOBP(TL_Z)Z):ZO ( i >:Fﬂ+1:Tp(n+1)a

i.e., (10) holds for 0 <n < p+ 1. Now assume the identity (10) holds for some
n > 0. By Definition 1 and the inductive hypothesis, we get

T,(n+2)=Ty(n+1)+ Tp(n) +Ty(n—p)

3] 23] [ =5 ]
:ZBp(n—i,i)—F Z By(n—i—1,i)+ Z B,(n—i—p—1,1)
i=0 i=0 i=0
5] L=£]
:Bp(n,O)—FZBp(n—i,i)—F Z B,(n—1i,i—1)
i=1 1=1
|2
+ Z By(n—i—p—1,i—1)
=1
|24
By(n+1,00+ Y By(n—i+1,i) if  is even
_ i=1
|25
) ) n—1n-1 .
B,(n+1,0)+ B,(n—i+1,i)+ B, (T’ 5 > if n is odd
i=1
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i.e., (10) holds for n + 1. Hence the proof is complete. O
Using (9), we see that the identity (10) can also be written in terms of
binomial coeflicients as stated in the following corollary.

Corollary 4. Let p e N and n € NU{0}. Then

3] 55

Tp(n—kl):i:O + (;) (”_ii_pj) (11)

j=0

Taking p = 1 in (11), we obtain (2) which gives an expansion of the classical
tribonacci numbers.
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