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Abstract

In this paper, we classify solvable quadratic Lie algebras up to di-
mension 6. In cases of dimensions smaller than 6, we use the Witt de-
composition given in [4] and a result in [12] to obtain two non-Abelian
indecomposable solvable quadratic Lie algebras. In the case of dimen-
sion 6, by applying the method of double extension given in [7] and [11]
and the classification result of singular quadratic Lie algebras in [6], we
obtain three families of indecomposable solvable quadratic Lie algebras.

Introduction

Throughout the paper, the base field is the complex field C. All considered
vector spaces are finite-dimensional complex vector spaces.

As we known, the Killing form is a useful tool in studying semisimple Lie al-
gebras. The Cartan criterion in the classification of Lie algebras or the proof of
the Kostant-Morosov theorem, an important tool in the classification of adjoint
orbits of classical Lie algebras o(m) and sp(2n), base on the non-degeneracy
of the Killing form. Another remarkable property of the Killing form is the
invariance. It is natural to arise a question that are there not necessarily
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semisimple Lie algebras for which there exists a non-degenerate invariant bilin-
ear form? The answer is confirmed. Such Lie algebras will be called quadratic
Lie algebras. For instance, let g be a Lie algebra, g∗ be its dual space and
ad∗ : g → End(g∗) denoted by the coadjoint representation of g in g∗. Then
the vector space ḡ = g ⊕ g∗ with the product defined by:

[X + f, Y + g]ḡ = [X, Y ]g + ad∗(X)(g) − ad∗(Y )(f)

becomes a quadratic Lie algebra with an invariant bilinear form given by:

B(X + f, Y + g) = f(Y ) + g(X)

for all X, Y ∈ g; f, g ∈ g∗.
Quadratic Lie algebras are an interesting algebraic object which is in re-

lation with many problems of Mathematics and Physics (see [3], [9] and their
references). Furthermore, The notion of Quadratic Lie algebras can be general-
ized for Lie superalgebras or can be similarly considered for other algebras (see
[1], [2], [3] or [13]). Recently, there are many works which have been devoted to
develop tools for the study of quadratic Lie algebras (see, for example, [3], [7],
[11] and [12]). Among these tools, the double extensions are effective ones to
construct and study quadratic Lie algebras. The notion of double extensions is
initiated by V. Kac in the solvable case (see [7]) and is developed by A. Medina
and P. Revoy in the general case (see [11]).

Our approach to quadratic Lie algebras in this paper is the familiar way
that is in low dimensions. We focus our attention on the solvable case and
give a classification of all indecomposable solvable quadratic Lie algebras up to
dimension 6. The classification of solvable quadratic Lie algebras up to dimen-
sion 4 can be found in [13] but here we redo it by a shorter way which is based
on the Witt decomposition in [4] combined with a result in [12]. We use this
method to classify solvable quadratic Lie algebras of dimension 5 which have
been done in [6] by the method of double extension. In the case of dimension
6, we apply the classification of O(n)-adjoint orbits of the Lie algebra o(n) (see
[5]) and the classification of singular quadratic Lie algebras give in [6] to obtain
three families of indecomposable solvable quadratic Lie algebras.

The paper is organized in 3 sections. The first one is devoted to introduce
basic definitions and preliminaries. The classification of solvable quadratic Lie
algebras up to dimension 5 is shown in Section 2. In Section 3, we consider
a particular case of the notion of double extension and apply it to obtain all
indecomposable solvable quadratic Lie algebras of dimension 6.

1 Preliminaries

Definition 1.1. Let g be a Lie algebra. A bilinear form B : g × g → C is
called:
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(i) symmetric if B(X, Y ) = B(Y, X) for all X, Y ∈ g,

(ii) non-degenerate if B(X, Y ) = 0 for all Y ∈ g implies X = 0,

(iii) invariant if B([X, Y ], Z) = B(X, [Y, Z]) for all X, Y, Z ∈ g.

A Lie algebra g is called quadratic if there exists a bilinear form B on g
such that B is symmetric, non-degenerate and invariant.

Let (g, B) be a quadratic Lie algebra and V be a subspace of g. Denote the
orthogonal component of V by V ⊥ = {X ∈ g | B(X, Y ) = 0, ∀ Y ∈ V } then
we have:

dim(V ) + dim(V ⊥) = dim(g).

An element X in g is called isotropic if B(X, X) = 0 and a subspace W of
g is called totally isotropic if B(X, Y ) = 0 holds all X, Y ∈ W . In this case, it
is obvious that W ⊂ W⊥.

The study of quadratic Lie algebras can be reduced to the study of inde-
composable ones by the following proposition in [3].

Proposition 1.2. Let (g, B) be a quadratic Lie algebra and I be an ideal of
g. Then I⊥ is also an ideal of g. Moreover, if the restriction of B on I × I
is non-degenerate then the restriction of B on I⊥ × I⊥ is also non-degenerate,
[I, I⊥] = {0} and I ∩ I⊥ = {0}.

If the restriction of B on I × I is non-degenerate then I is called a non-
degenerate ideal of g. In this case, g = I ⊕ I⊥. Since the direct product is the

orthogonal direct product so for convenience, we use the notion g = I
⊥⊕ I⊥.

Definition 1.3. Let g be a quadratic Lie algebra. We say g indecomposable if

g = g1

⊥⊕ g2, with g1 and g2 ideals of g, implies g1 = {0} or g2 = {0}.
Definition 1.4. Let g and g′ be two Lie algebras endowed with non-degenerate
invariant bilinear forms B and B′ respectively. If A is a Lie algebra isomorphism
from g onto g′ satisfying B′(A(X), A(Y )) = B(X, Y ) for all X, Y ∈ g then we
say that g and g′ are i-isomorphic and A is an i-isomorphism from g onto g′.

Remark that the isomorphic and i-isomorphic notions may be not equiva-
lent. An example can be found in [6].

Next, we introduce another decomposition that is called the reduced decom-
position. This notion allows us to only focus on quadratic Lie algebras having
a totally isotropic center.

Proposition 1.5. (see [12])
Let (g, B) be a non-Abelian quadratic Lie algebra. Then there exist a central

ideal z and an ideal l �= {0} such that:
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(i) g = z
⊥⊕ l, where (z, B|z×z) and (l, B|l×l) are quadratic Lie algebras.

Moreover, l is non-Abelian.

(ii) The center Z(l) is totally isotropic, i.e. Z(l) ⊂ [l, l] and

dim(Z(l)) ≤ 1
2

dim(l) ≤ dim([l, l]).

(iii) Let g′ be a quadratic Lie algebra and A : g → g′ be a Lie algebra isomor-
phism. Then

g′ = z′
⊥⊕ l′

where z′ = A(z) is central, l′ = A(z)⊥, Z(l′) is totally isotropic and l and
l′ are isomorphic. Moreover if A is an i-isomorphism then l and l′ are
i-isomorphic.

Definition 1.6. A quadratic Lie algebra g �= {0} is called reduced if Z(g) is
totally isotropic.

Note that if a quadratic Lie algebra g of dimension more than 1 is not
reduced then there is a central element X such that B(X, X) �= 0. That
means the ideal spanned by X is non-degenerate. By Proposition 1.2, g is
decomposable.

2 Solvable quadratic Lie algebras

up to dimension 5

In this section, we classify all indecomposable solvable quadratic Lie algebras
up to dimension 5. The classification is based on the Witt decomposition given
in [4] as follows:

Proposition 2.1. Let V be a finite-dimensional complex vector space endowed
with a non-degenerate bilinear form B. Assume U a totally isotropic subspace
of V . Then there exist a totally isotropic subspace W and a non-degenerate
subspace F of V such that dim(U) = dim(W ), F = (U ⊕ W )⊥ and

V = F
⊥⊕ (U ⊕ W )

As a consequence, if {X1, ..., Xn} is a basis of U then there exists a basis
{Y1, ..., Yn} of W such that B(Xi, Yj) = δij for all 1 ≤ i, j ≤ n.

We recall the classification of solvable quadratic Lie algebras up to dimen-
sion 4 in [13] but here there is a shorter proof based on a remarkable result in
[12] that if g is a non-Abelian quadratic Lie algebra then dim([g, g]) ≥ 3.
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Proposition 2.2. Let g be a solvable quadratic Lie algebra with dim(g) ≤ 4.
Then we have the following cases:

(i) If dim(g) ≤ 3 then g is Abelian.

(ii) If dim(g) = 4 and g is non-Abelian then g is i-isomorphic to the dia-
mond Lie algebra g4 = span{X, P, Q, Z}, where the subspaces spanned
by {X, P } and {Q, Z} are totally isotropic, B(X, Z) = B(P, Q) = 1,
B(X, Q) = B(P, Z) = 0 and the Lie bracket is defined by [X, P ] = P ,
[X, Q] = −Q, [P, Q] = Z, otherwise trivial.

Proof. Since g is solvable then [g, g] �= g. Therefore if dim(g) ≤ 3 then g
is Abelian. If dim(g) = 4 and g is non-Abelian, we show that g is reduced.
Indeed, if g is not reduced then there exists a central element X such that
B(X, X) �= 0. That implies I = CX a non-degenerate ideal of g and so we
have

g = I
⊥⊕ I⊥.

Note that I⊥ is a solvable quadratic Lie algebra of dimension 3 then I⊥ is
Abelian. Therefore, g is Abelian. This contradiction shows g reduced.

Since [g, g] �= g and dim([g, g]) ≥ 3 then dim([g, g]) = 3 and so dim(Z(g)) =
1. Assume Z(g) = CZ. Since Z(g) is totally isotropic then by the Witt de-
composition there exists a one-dimensional totally isotropic subspace W and a
two-dimensional non-degenerate subspace F of g such that:

g = F
⊥⊕ (Z(g) ⊕ W ).

Moreover, we can choose an element X in W and a basis {P, Q} of F such that
B(X, Z) = B(P, Q) = 1 and B(P, P ) = B(Q, Q) = 0.

By [g, g] = Z(g)⊥ then [g, g] = span{Z, P, Q} and therefore we can assume

[X, P ] = a1Z+b1P+c1Q, [X, Q] = a2Z+b2P+c2Q and [P, Q] = a3Z+b3P+c3Q

where ai, bi, ci ∈ C, 1 ≤ i ≤ 3.
Since B(X, [X, P ]) = B([X, X], P ) = 0 and B(P, [X, P ]) = −B([P, P ], X) =

0 one has a1 = c1 = 0. Similarly, a2 = b2 = 0 and b3 = c3 = 0. Moreover,
B(X, [P, Q]) = B([X, P ], Q) = −B([X, Q], P ) implies b1 = −c2 = a3.

By replacing Z := a3Z and X := X
a3

we obtain the Lie bracket [X, P ] = P ,
[X, Q] = −Q and [P, Q] = Z. �

Now, we continue with g an indecomposable solvable quadratic Lie algebra
of dimension 5. It is obvious that g is reduced. By Proposition 1.5, there are
only two cases: dim(Z(g)) = 1 and dim(Z(g)) = 2.

(i) If dim(Z(g)) = 1, assume Z(g) = CZ. Then there exist an isotropic
element Y and a subspace F of g such that B(Z, Y ) = 1 and g =
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F
⊥⊕ (CZ ⊕ CY ), where F = (CZ ⊕ CY )⊥. We can choose a basis

{P, Q, X} of F satisfying B(P, X) = B(Q, Q) = 1, the other are zero.

Since [g, g] = Z(g)⊥ then [g, g] = span{Z, P, Q, X}. Moreover, since
B([Y, X], Y ) = B([Y, X], X) = 0 then we can assume [Y, X] = a1X +b1Q
with a1, b1 ∈ C. Similarly, we have the Lie bracket defined by:

[Y, Q] = a2X + b2P, [Y, P ] = a3Q + b3P, [X, Q] = a4X + b4Z

[X, P ] = a5Q + b5Z and [Q, P ] = a6P + b6Z

where ai, bi ∈ C, 2 ≤ i ≤ 6.

By the invariance of B, we obtain a1 = b5 = −b3, b1 = b4 = −b2,
a2 = b6 = −a3 and a4 = a6 = −a5. Therefore, we rewrite Lie brackets as
follows:

[Y, X] = xX + yQ, [Y, Q] = zX − yP, [Y, P ] = −zQ − xP,

[X, Q] = wX + yZ, [X, P ] = −wQ + xZ and [Q, P ] = wP + zZ

where x, y, z, w ∈ C.

If w �= 0, set A := [X, Q], B := [X, P ] and C := [Q, P ] then one has
[A, B] = −w2A, [B, C] = −w2C and [C, A] = −w2B. It implies that
the vector space U = span{A, B, C} becomes a subalgebra of g and this
subalgebra is not solvable. This is a contradiction by g solvable. So
w = 0. In this case, it is easy to check that zX − xQ + yP ∈ Z(g). On
the other hand, the numbers x, y, z are not zero at the same time. So
dim(Z(g)) > 1. This is a contradiction then it does not happen this case.

(ii) If dim(Z(g)) = 2, assume Z(g) = span{Z1, Z2}. By the Witt decom-
position, there exist elements X1, X2 and T satisfying: g is spanned by
{Z1, Z2, T,
X1, X2}, the subspace W = span{X1, X2} is totally isotropic, the bi-
linear form B is defined by B(T, T ) = 1, B(Xi, Zj) = δij, 1 ≤ i, j ≤ 2,
the other are zero.

Since [g, g] = Z(g)⊥ then [g, g] = span{Z1, Z2, T}. Moreover, B is invari-
ant then we can assume [X1, X2] = xT , [X1, T ] = yZ2 and [X2, T ] = zZ1,
where x, y, z ∈ C. By the invariance of B again, we obtain x = −y = z.
Replace X1 := X1

x and Z1 := xZ1 to obtain [X1, X2] = T , [X1, T ] = −Z2

and [X2, T ] = Z1.

So, we have a classification of solvable quadratic Lie algebras of dimension
5 as follows.
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Proposition 2.3. Let (g, B) be an indecomposable solvable quadratic Lie al-
gebra of dimension 5. Then there exists a basis {Z1, Z2, T, X1, X2} of g such
that B(T, T ) = 1, B(Xi, Zj) = δij , 1 ≤ i, j ≤ 2, the other are zero and the Lie
bracket is defined by [X1, X2] = T , [X1, T ] = −Z2 and [X2, T ] = Z1, the other
are trivial.

3 Solvable quadratic Lie algebras
of dimension 6

3.1 Double extension

Definition 3.1. Let (g, B) be a quadratic Lie algebra. A derivation D of g is
called skew-symmetric if D satisfies

B(D(X), Y ) = −B(X, D(Y )), ∀X, Y ∈ g.

Denote by Dera(g) the vector space of skew-symmetric derivations of g. By
the invariance of B, all inner derivations of g are in Dera(g).

Definition 3.2. (see [7] and [11])
Let (g, B) be a quadratic Lie algebra and C ∈ Dera(g). On the vector space

ḡ = g ⊕ Ce ⊕ Cf,

we define the product:

[X, Y ]ḡ = [X, Y ]g + B(C(X), Y )f, [e, X] = C(X) and [f, ḡ] = 0

for all X, Y ∈ g.
Then ḡ becomes a Lie algebra. Moreover, ḡ is a quadratic Lie algebra with

an invariant bilinear form B̄ defined by:

B̄(e, e) = B̄(f, f) = B̄(e, g) = B̄(f, g) = 0, B̄(X, Y ) = B(X, Y ) and B̄(e, f) = 1

for all X, Y ∈ g. In this case, we call ḡ the double extension of g by C.

The Lie algebra ḡ is also called the double extension of g by the one-
dimensional Lie algebra by means of C (or a one-dimensional double extension,
for short). The more general definition can be found in [11]. However, the
one-dimensional double extension is sufficient for studying solvable quadratic
Lie algebras by the following proposition (see [7] or [8]).

Proposition 3.3. Let (g, B) be a solvable quadratic Lie algebra of dimension n,
n ≥ 2. Assume g non-Abelian. Then g is a one-dimensional double extension
of a solvable quadratic Lie algebra of dimension n − 2.
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Remark 3.4. A particular case of one-dimensional double extensions is g Abelian,
then C is a skew-symmetric map in the Lie algebra o(g) and the Lie bracket
on ḡ is given by:

[e, X] = C(X) and [X, Y ] = B(C(X), Y )f, ∀ X, Y ∈ g.

Such Lie algebras have been classified up to isomorphism and up to i-isomorphism
in [6].

Example 3.5. Let q be a two-dimensional complex vector space endowed with
a non-degenerate symmetric bilinear form B. In this case, q is called a two-
dimensional quadratic vector space. We can choose a basis {P, Q} of q such
that B(P, P ) = B(Q, Q) = 0 and B(P, Q) = 1 (we call {P, Q} a canonical basis
of q). Let C : q → q be a skew-symmetric map of q, that is an endomorphism
satisfying B(C(X), Y ) = −B(X, C(Y ) for all X, Y ∈ q. In this example, we
choose C having the matrix with respect to the basis {P, Q} as follows:

C =
(

1 0
0 −1

)
.

Set the vector space
g = q ⊕ CX ⊕ CZ

and define the product:

[X, P ] = C(P ) = P, [X, Q] = C(Q) = −Q and [P, Q] = B(C(P ), Q)Z = Z

Then g is the diamond Lie algebra given in Proposition 2.2 (ii).

3.2 Solvable quadratic Lie algebras of dimension 6

By Proposition 3.3, the key of the classification of solvable quadratic Lie
algebras is describing skew-symmetric derivations of a solvable quadratic Lie
algebra. More particular, in the case of dimension 6, it is necessary to describe
skew-symmetric derivations of solvable quadratic Lie algebras of dimension 4.
By the classification result in Proposition 2.2, we focus on the Abelian Lie
algebra of dimension 4 and the diamond Lie algebra. We need the following
lemma.

Lemma 3.6. Any skew-symmetric derivation of the diamond Lie algebra g4 is
inner.

Proof. Assume g = span{X, P, Q, Z} where [X, P ] = P , [X, Q] = −Q and
[P, Q] = Z, the bilinear form B is given by B(X, Z) = B(P, Q) = 1, the other
are zero. Let D be a skew-symmetric derivation of g. Since Z(g) is stable by D
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then we can assume D(Z) = xZ with x ∈ C. Moreover D is skew-symmetric
then

B(D(X), Z) = −B(X, D(Z)) = B(X, xZ) = −x.

So we can assume D(X) = −xX + yP + zQ +wZ with y, z, w ∈ C. The ideal
[g, g] is also stable by D then we write:

D(P ) = aP + bQ + cZ and D(Q) = a′P + b′Q + c′Z

where a, b, c, a′, b′, c′ ∈ C.
One has D(P ) = D([X, P ]) = [D(X), P ] + [X, D(P )]. Then we obtain

x = b = 0 and z = −c. By a straightforward calculating, we obtain y = −c′,
a′ = w = 0, a = −b′ and then the matrix of D corresponding to the basis
{X, P, Q, Z} is:

D =

⎛
⎜⎜⎝

0 0 0 0
y a 0 0
z 0 −a 0
0 −z −y 0

⎞
⎟⎟⎠ .

It is clear that D = ad(aX − yP + zQ) and then D is an inner derivation. �

Corollary 3.7. Any double extension of g4 by a skew-symmetric derivation is
decomposable.

Proof. Keep the basis {X, P, Q, Z} of g4 as in the proof of Lemma 3.6 and let
D be a skew-symmetric derivation of g4. By the above lemma, the matrix of
D is:

D =

⎛
⎜⎜⎝

0 0 0 0
y a 0 0
z 0 −a 0
0 −z −y 0

⎞
⎟⎟⎠

where a, y, z ∈ C.
Let ḡ = g4 ⊕ Ce ⊕ Cf be the double extension of g4 by D. Then the Lie

bracket is defined on ḡ as follows:

[e, X] = yP + zQ, [e, P ] = aP − zZ, [e, Q] = −aQ − yZ, [X, P ] = P + zf,

[X, Q] = −Q + yf and [P, Q] = Z + af.

It is easy to check that u = −e + aX − yP + zQ is in Z(ḡ). Moreover, f ∈
Z(ḡ) and B(u, f) = −1. Therefore Z(ḡ) is not totally isotropic and then ḡ is
decomposable. �

A more general result of Corollary 3.7 can be found in [9] where any double
extension by an inner derivation is decomposable.
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Proposition 3.8. Let (g, B) be a solvable quadratic Lie algebra of dimension
6. Assume g indecomposable. Then there exists a basis {Z1, Z2, Z3, X1, X2, X3}
of g such that the bilinear form B is defined by B(Xi, Zj) = δi,j , 1 ≤ i, j ≤ 3,
the other are zero and g is i-isomorphic to each of Lie algebras as follows:

(i) g6,1: [X3, Z2] = Z1, [X3, X1] = −X2 and [Z2, X1] = Z3,

(ii) g6,2(λ): [X3, Z1] = Z1, [X3, Z2] = λZ2, [X3, X1] = −X1, [X3, X2] =
−λX2, [Z1, X1] = Z3 and [Z2, X2] = λZ3 where λ ∈ C and λ �= 0. In
this case, g6,2(λ1) and g6,2(λ2) is i-isomorphic if and only if λ2 = ±λ1

or λ2 = λ1
−1,

(iii) g6,3: [X3, Z1] = Z1, [X3, Z2] = Z1+Z2, [X3, X1] = −X1−X2, [X3, X2] =
−X2 and [Z1, X1] = [Z2, X1] = [Z2, X2] = Z3.

Proof. Assume (g, B) an indecomposable solvable quadratic Lie algebra of
dimension 6. Then g is a double extension of a four-dimensional solvable
quadratic Lie algebra q by a skew-symmetric derivation C. By Corollary 3.7
and note that g is indecomposable, q must be Abelian. Therefore, g can be

written by g = (CX3 ⊕CZ3)
⊥⊕ q, where q is a four-dimensional quadratic vec-

tor space, C = ad(X3) ∈ o(q, Bq), B(X3 , Z3) = 1, B(X3, X3) = B(Z3 , Z3) = 0
and Bq = B|q×q [6]. Moreover, the i-isomorphic classification of g reduces to
classify O(q)-orbits of P1(o(q)), where P1(o(q)) is denoted by the projective
space of o(q).

Let {Z1, Z2, X1, X2} be a canonical basis of q, that means Bq(Zi, Zj) =
Bq(Xi, Xj) = 0, Bq(Zi, Xj) = δij , 1 ≤ i, j ≤ 2. Since g is indecomposable
then we choose O(q)-orbits of P1(o(q)) whose representative element C has
ker(C) ⊂ Im(C) and the matrix of C with respect to the basis {Z1, Z2, X1, X2}
is given by one of following matrices:

(i) C =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

⎞
⎟⎟⎠: the nilpotent case,

(ii) C(λ) =

⎛
⎜⎜⎝

1 0 0 0
0 λ 0 0
0 0 −1 0
0 0 0 −λ

⎞
⎟⎟⎠ , λ �= 0: the diagonalizable case,

(iii) C =

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 −1 0
0 0 −1 −1

⎞
⎟⎟⎠: the invertible case (see [6] for more details).
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Therefore, we have three not i-isomorphic families of quadratic Lie algebras
given as in the proposition which correspond to each of above cases. Note that
for those Lie algebras, the i-isomorphic and isomorphic notions are equivalent.
For the second family, g6,2(λ1) is i-isomorphic to g6,2(λ2) if and only if there
exists μ ∈ C nonzero such that C(λ1) is in the O(q)-adjoint orbit through
μC(λ2). That happens if and only if λ1 = ±λ2 or λ2 = λ1

−1. �
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