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Abstract

For a point of order two and a point of order three for a rational
function defined over a number field with good reduction outside a set
S, it is known that the bilinear form B([x1, y1], [x2, y2]) = x1y2 − x2y1

yields a unit in the ring of S-integers of a number field. We prove that
this is essentially the only bilinear form with this property.

1 Introduction

Fix the nth root of unity μ = e2πi/n. The cyclotomic units can be constructed
using 1 − μj for 1 ≤ j ≤ n − 1. Let K be a field. One of our goals is to
study this theory for the periodic points of a rational function φ ∈ K(z), or
equivalently of a rational map φ : P1(K) → P1(K). In other words, we will
study units in the fields generated by the periodic points of φ . By analogy
with the cyclotomic theory and in recognition of the dynamical study of periodic
points of rational maps, we will call the units constructed by periodic points
dynamical units. Some of these were originally constructed by Narkiewicz [1],
then was reformulated and generalized by Morton and Silverman [2].
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2 Background

We study dynamics of rational maps φ over fields K with valuations that have
“good reduction.” This means that the reduction of φ modulo the maximal
ideal of the ring of integers of K is a “well-behaved” rational map φ̃ over the
residue field k of K. Thus, studying the dynamics of φ̃ over k allows us to derive
information about the dynamics of φ over K. We set the following notation:
K a field with normalized discrete valuation v : K∗ → Z
| · | = c−v(x) for some c > 1, an absolute value associated to v.
R = {α ∈ K : v(α) ≥ 0}, the ring of integers of K.
p = {α ∈ K : v(α) ≥ 1}, the maximal ideal of R.
R∗ = {α ∈ K : v(α) = 0}, the group of units of R.
k = R/p, the residue field of R.
∼ reduction modulo p, i.e., R → k, a �→ ã.

The following theorem will provide the notion of “good reduction”, see [3].

Definition 1. Let φ : P1 → P1 be a rational map and write

φ = [F (X, Y ), G(X, Y )]

with homogeneous polynomials F,G ∈ K[X, Y ] and gcd(F,G) = 1. We say that
the pair (F,G) is normalized, or has been written in normalized form, if
F,G ∈ R[X, Y ] and at least one coefficient of F or G is in R∗.

Equivalently, φ = [F,G] is normalized if

F (X, Y ) = a0X
d + a1X

d−1Y + · · ·+ ad−1XY
d−1 + adY

d

and
G(X, Y ) = b0X

d + b1X
d−1Y + · · ·+ bd−1XY

d−1 + bdY
d

satisfy
min{v(a0), v(a1), . . . , v(ad), v(b0), v(b1), . . . , v(bd)} = 0.

Definition 2. Let φ : P1 → P1 be a rational map defined over a field K
with nonarchimedean absolute value | · |v . Write φ = [F,G] using a pair of
normalized homogeneous polynomials F,G ∈ R[X, Y ]. The resultant of φ is the
quantity Res(φ) = Res(F,G).

Theorem 1. [3] Let φ : P1 → P1 be a rational map defined over K and write
φ = [F,G] in normalized form. The following are equivalent:

(a) deg(φ) = deg(φ̃).

(b) The equation F̃ (X, Y ) = G̃(X, Y ) = 0 has no solution [α, β] ∈ P1(k).
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(c) Res(φ) ∈ R∗.

(d) Res(F,G) �= 0.

Definition 3. A rational map φ : P1 → P1 defined over K is said to have good
reduction (modulo v) if it satisfies any one (hence all) of the conditions of
Theorem 1.

Since, in general, periodic points might not lie in the base field, one some-
times need to study the points in the extension of the base field. The following
theorem enables one to study the extensions of a field with valuation.

Theorem 2. [4] Let K be a subfield of a field L. Then a valuation on K has
an extension to a valuation on L.

3 Periodic Points and Dynamical Units

Recall that the chordal metric on P1(C), which we now denote by ρ∞, is defined
by the formula

ρ∞(P1, P2) =
|X1Y2 −X2Y1|√|X1|2 + |Y1|2

√|X2|2 + |Y2|2

for points P1 = [X1, Y1] and P2 = [X2, Y2] in P1(C). In the case of a field K
having a nonarchimedean absolute value | · |v, it is convenient to use a metric
given by a slightly different formula.

Definition 4. Let K be a field with a nonarchimedean absolute value | · |v, and
let P1 = [X1, Y1] and P2 = [X2, Y2] be points in P1(K). The v-adic chordal
metric on P1(K) is

ρv(P1, P2) =
|X1Y2 −X2Y1|v

max{|X1|v, |Y1|v}max{|X2|v, |Y2|v} .

It is clear from the definition that ρv(P1, P2) is independent of the choice of
homogeneous coordinates for P1 and P2.

The following proposition will confirm that ρv is indeed a metric. In fact,
it is an ultrametric, i.e., it satisfies the nonarchimedean triangle inequality.

Proposition 1. [3]

(a) 1 ≥ ρv(P1, P2) ≥ 0 for all P1, P2 ∈ P1(K).

(b) ρv(P1, P2) = 0 if and only if P1 = P2.
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(c) ρv(P1, P2) = ρv(P2, P1).

(d) ρv(P1, P3) ≤ max{ρv(P1, P2), ρv(P2, P3)}.
Lemma 1. [3] Let φ : P1(K) → P1(K) be a rational map that has good reduc-
tion. Then the map φ is everywhere nonexpanding:

ρv(φ(P1), φ(P2)) ≤ ρv(P1, P2)

for all P1, P2 ∈ P1(K).

As their name suggests, rational maps with good reduction behave well
when they are reduced. For the proof of the following theorem see [3].

Theorem 3. [3] Let φ : P1(K) → P1(K) be a rational map that has good
reduction. Then

(a) φ̃(P̃ ) = φ̃(P ) for all P ∈ P1(K)

(b) Let ψ : P1(K) → P1(K) be another rational map with good reduction.
Then the composition φ ◦ ψ has good reduction, and φ̃ ◦ ψ = φ̃ ◦ ψ̃.

Proposition 2. [3] Let φ(z) ∈ K(z) be a rational function of degree d ≥ 2
with good reduction.

(a) Let P ∈ P1(K) be a point of period n for φ. Then ρv(φiP, φjP ) =
ρv(φi+kP, φj+kP ) for all i, j, k ∈ Z, where for i < 0 we use the periodicity
φnP = P to define φiP .

(b) Let P ∈ P1(K) be a point of exact period n for φ. Then ρv(φiP, φjP ) =
ρv(φP, P ) for all i, j ∈ Z satisfying gcd(i− j, n) = 1.

(c) Let P1, P2 ∈ P1(K) be periodic points for φ of exact period n1 and n2,
respectively. Assume that n1 � n2 and n2 � n1. Then ρv(P1, P2) = 1.

Theorem 4. [3, 2] Let φ ∈ K(z) be a rational map of degree d ≥ 2 with good
reduction. Let n1, n2 ∈ Z be integers with n1 � n2 and n2 � n1, let P1, P2 ∈
P1(K) be periodic points of exact periods n1 and n2, respectively, and write
Pi = [xi, yi] in normalized form. Then x1y2 − x2y1 ∈ R∗.

Remark: Theorem 4 can be extended to the preperiodic points by the follow-
ing.

Proposition 3. Let φ(z) ∈ K(z) be a rational function of degree d ≥ 2 with
good reduction. Let P1, P2 ∈ P1(K) be preperiodic points for φ of exact periods
n1 and n2, respectively. Assume that n1 � n2 and n2 � n1. Then ρv(P1, P2) = 1.
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Proof Since P1, P2 are preperiodic points, there is k ∈ N such that φk(P1)
and φk(P2) are periodic points of exact periods n1 and n2, respectively. By
Proposition 2,
ρv(φk(P1)1, φk(P2)) = 1. By Proposition 1(a) and Lemma 1, ρv(P1, P2) = 1.
�

Theorem 5. Let φ(z) ∈ K(z) be rational function of degree d ≥ 2 with good
reduction. Let n1, n2 ∈ N with n1 � n2 and n2 � n1, let P1, P2 ∈ P1(K) be
preperiodic points for φ of exact periods n1 and n2, respectively, and write
Pi = [xi, yi] in normalized form. Then

x1y2 − x2y1 ∈ R∗.

Moreover, if φ is even, then x1y2 ± x2y1 ∈ R∗.

Proof Since Pi are in normalized form, the chordal metric is given by

ρv(P1, P2) =| x1y2 − x2y1 |v .
The assumptions on n1 and n2 and Proposition 3 imply that ρv(P1, P2) = 1,

and hence x1y2 −x2y1 is a unit. Now assume that φ is even. Thus, −x2 is also
a preperiodic point. Then x1y2 ± x2y1 ∈ R∗. �

Morton and Silverman show in [2] that we can use periodic points of rational
functions to produce units over fields with valuations. We will consider the
converse problems of the results in [2]. To be more precise, we consider the
following question:
What are the forms that we can use to produce units from periodic points of
rational functions over fields with valuations?
We will prove that, under certain conditions, the form that can be used to
generate the units is unique.

Proposition 4. Let K be a number field and let T be a finite set of places of
K that includes the archimedean places. Let T̃ be the set of places of Q lying
over the places of T. Let a, b ∈ K. Suppose p is a prime number and ζp is a
primitive pth root of unity such that

apm

ζp + bp
m

is a T̃ -unit of K(ζp) for infinitely many positive integers m. Then each of a, b
is a T-unit or 0. If ab �= 0 then a/b is a root of unity.

Proof For each m as in the statement, write

u−1
m apm

ζp + u−1
m bp

m

= 1,
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where um is a T -unit. Let S be the set of primes occuring in the factorizations
of a and b plus the places in T. The S-unit theorem (applied to K(ζp)) says
that u+ v = 1 has only finitely many solutions in S-units u and v (see [5, 6]).
Therefore, there are indices m1 �= m2 such that

u−1
m1
apm1 = u−1

m2
apm2

.

This implies that a power of a is a T -unit, hence a is a T -unit. Similarly, b is
a T -unit.
Let T ′ be the set of places of K(ζp) above T . The group of T ′-units of K(ζp)
is finitely generated, so there are finitely many cosets mod p-th powers. Write
each um in the form wvp

m with w from a finite set of representatives mod pth
powers. Some w, call it w0, occurs for infinitely many m. Therefore, for these
m,

w−1
0 (apm−1

v−1
m )pζp +w−1

0 (bp
m−1

v−1
m )p = 1.

The S-unit theorem implies that there are indices m′ and m′′ such that

apm′−1
v−1

m′ = apm′′−1
v−1

m′′

and
bp

m′−1
v−1

m′ = bp
m′′−1

v−1
m′′ .

The ratio of these two relations (if ab �= 0) yields

(a/b)pm′−1−pm′′−1
= 1.

Therefore, if ab �= 0 then a/b is a root of unity. �
We can now prove a converse to Theorem 4.

Theorem 6. Let K be number field and let T be finite set of places of K that
includes the archimedean places. Let T̃ be a set of places of Q lying above the
places in T. Suppose a, b, c, d ∈ K are such that

B([x1, y1], [x2, y2]) = ax1x2 + bx1y2 + cx2y1 + dx2y2

is a T̃ -unit whenever φ is a rational function of degree at least 2 defined over K
with everywhere good reduction, [x1, y1] ∈ P1(Q) is a normalized point of order
2 and [x2, y2] ∈ P1(Q) is a normalized point of order 3 for φ. Then a = 0 = d
and b = −c. Moreover, b and c are T-units.

Proof Let p ≡ 1 (mod 3) be prime. Let m ≥ 1 and let n have order 6
in (Z/pm+1Z)×. Let k be an integer and let φ(x) = k + (x − k)−n. Then
[x1, y1] = [k, 1] and [1, 0] have order 2 for φ and [k+ ζ, 1] has order 3, where ζ
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is any primitive pm+1st root of unity.
We have that

B([1, 0], [k+ ζ, 1]) = aζ + (ak + b)

is a T̃ -unit in K(ζ) for each primitive pm+1-th root of unity ζ. Fix one such ζ.
The product

um =
pm∏
j=1

(aζ1+jp + (ak + b)) = apm

ζp + (ak + b)pm

is a T̃ -unit (where ζp = ζpm

). If a �= 0 then ak + b �= 0 for sufficiently large k.
The proposition implies that (ak+ b)/a is a root of unity for large k. Absolute
values show that this is impossible. Therefore a = 0. Therefore, b is a T -unit.
Now conjugate φ by (1/x) to obtain

ψ(x) =
(1 − kx)n

k(1 − kx)n + xn
.

Then [x1, y1] = [1, k] and [0, 1] have order 2 for ψ and [1, k + ζ] has order 3,
where ζ is any primitive pm+1st root of unity. We find that d = 0 and c is a
T -unit.
Now compute

B([k, 1], [k+ ζ, 1]) = (b + c)k + cζ.

If b + c �= 0, we find that (b + c)k/c is a root of unity for all k > 0. This is
impossible. Therefore, b = −c. �
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