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Abstract

An elementary proof is given for the decidability whether each element

of a sequence satisfying a fourth order linear recurrence with integer

coefficients is nonnegative.

1 Introduction

Given a kth order linear recurrence of the form

un = a1un−1 + a2un−2 + · · ·+ akun−k (n ≥ k), (1)

where a1, a2, . . . , ak( �= 0) ∈ Z and with initial values u0, u1, . . . , uk−1, we are
interested in the Positivity Problem: Is it possible to decide whether the se-
quence (un)n≥0 is nonnegative ?, i.e., is it decidable whether un ≥ 0 for all
n ≥ 0 ? The Positivity Problem for k = 2 was solved in [3], for k = 3 in [4]
and recently, for k = 4 in [5], where the following result is proved.

Theorem 1. The Positivity Problem is decidable for each sequence of integers
satisfying a linear fourth order recurrence with integer coefficients.
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186 The positivity problem

The proof given in [5] is short and non-elementary due to the use of a
measure-theoretic result of Bell-Gerhold, [1]. We give here a longer yet purely
elementary proof of this result. This is done by first classifying all possible
explicit shapes of the sequence elements, which is done in the next section. In
the last two sections, Theorem 1 is verified by case analysis. For cases whose
elementary proofs have already been given in [5], we merely refer to such proofs.

2 Classification of roots

Following the elaboration in Section 5.2.g on pages 170-172 of [2], consider a
fourth order linear recurrence of the form (1) (with k = 4). Its characteristic
polynomial is

p(x) := x4−a1x
3−a2x

2−a3x−a4 = (x−λ1)(x−λ2)(x−λ3)(x−λ4) ∈ Z[x] (2)

where λ1, λ2, λ3, λ4 are all the four roots of p(x). Write

p (x+ a1/4) = x4 + αx2 + βx+ γ = (x− x1)(x− x2)(x− x3)(x− x4) ∈ Q[x],

where x1, x2, x3, x4 are all the four roots of p(x+ a1/4) ∈ Q[x] and

α = −
3a21 + 8a2

8
, β = −

a31 + 4a1a2 + 8a3
8

,

γ = −
3a41 + 16a21a2 + 64a1a3 + 256a4

256
.

Then, xi = λi − a1/4 (i = 1, 2, 3, 4) and x1 + x2 + x3 + x4 = 0. Let

u = (x1 + x2)(x3 + x4) = −(x1 + x2)
2, (3)

v = (x1 + x3)(x2 + x4) = −(x1 + x3)
2, (4)

w = (x1 + x4)(x2 + x3) = −(x1 + x4)
2. (5)

We construct a polynomial of degree 3 whose roots are u, v, and w. It
coefficients are found from the elementary symetric functions

∑
i<j xixj =

α,
∑

i<j<k xixjxk = −β, x1x2x3x4 = γ by computing u + v + w = 2α, uv +

uw + vw = α2 − 4γ, uvw = −β2. This polynomial is

q(x) := x3 − 2αx2 + (α2 − 4γ)x+ β2 = (x− u)(x− v)(x− w) ∈ Q[x]. (6)

Since

u− v = (x1 − x4)(x3 − x2) = (λ1 − λ4)(λ3 − λ2),

u− w = (x1 − x3)(x4 − x2) = (λ1 − λ3)(λ4 − λ2),

v − w = (x1 − x2)(x4 − x3) = (λ1 − λ2)(λ4 − λ3),
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the three polynomials q(x), p(x+ a1/4) and p(x) have the same discriminant

D = disc(q) = disc (p(x+ a1/4)) = disc(p)

= 16α4γ − 4α3β2 − 128α2γ2 + 144αβ2γ − 27β4 + 256γ3 ([6, p. 192])

= (u− v)2(u− w)2(v − w)2

To find the roots x1, x2, x3, x4 of the equation p(x + a1/4) = 0, we first solve
equation (6) to determine the roots u, v, w of q(x) = 0. From (3), (4), (5),
setting

x1 + x2 := u′ = square root of− u (7)

x1 + x3 := v′ = square root of− v (8)

x1 + x4 := w′ = square root of− w. (9)

where these square roots must be chosen so that

u′v′w′ = (x1 + x2)(x1 + x3)(x1 + x4) = x2
1

∑
i

xi +
∑

i<j<k

xixjxk = −β, (10)

we get

u′ + v′ + w′ = 3x1 + x2 + x3 + x4 = 2x1, − u′ + v′ − w′ = 2x3,

u′ − v′ − w′ = x2 − x1 − x3 − x4 = 2x2, − u′ − v′ + w′ = 2x4.

The solutions of p(x+ a1/4) = 0 are given by

x1 =
1

2
(u′ + v′ + w′) (11)

x2 =
1

2
(u′ − v′ − w′) (12)

x3 =
1

2
(−u′ + v′ − w′) (13)

x4 =
1

2
(−u′ − v′ + w′). (14)

To determine the nature of these roots, we subdivide our consideration into
three cases depending on the signs of D.

Case I: D > 0

As seen in [4], the three roots u, v, w of

q(x) = x3 − 2αx2 + (α2 − 4γ)x+ β2 = (x− u)(x− v)(x− w) ∈ Q[x]

are distinct real numbers. We subdivide into further subcases depending on
whether β = 0.
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I.1 β = 0.
Then q(x) has a zero root, say u = 0, implying by (7) that u′ = 0, and so

q(x) = x(x2 − 2αx+ (α2 − 4γ))

= x(x2 − (v + w)x+ vw) = x(x− v)(x− w).

I.1.1 α2 − 4γ ≥ 0. Then v, w have the same sign, distinct and nonzero.

I.1.1.1 α ≤ 0. Then v, w are two distinct negative real numbers
which by (8), (9) implies that v′, w′ are nonzero real numbers with
v′ �= ± w′. By (11),(12),(13) and (14), we have x1 = 1

2
(v′+w′), x2 =

1

2
(−v′−w′), x3 = 1

2
(v′−w′), x4 = 1

2
(−v′+w). Hence, p (x+ a1/4)

has four distinct nonzero real roots.

I.1.1.2 α > 0. Then v, w are two distinct positive real numbers,
which by (8), (9) implies that v′ = �i, w′ = ♥i are purely imaginary
with � �= ± ♥ being two nonzero real numbers. By (11),(12),(13)
and (14), we have x1 = 1

2
(� + ♥)i, x2 = − 1

2
(� + ♥)i = x̄1, x3 =

1

2
(�−♥)i, x4 = − 1

2
(�−♥)i = −x̄3. Thus, the roots of p(x+ a1/4)

consists of two nonzero distinct purely imaginary conjugate pairs.

I.1.2 α2−4γ < 0. Then v and w are two nonzero real numbers of opposite
sign, say v ∈ R− and w ∈ R+, which by (8), (9) implies that v′ is a
nonzero real number and w′ = ♥i is nonzero purely imaginary. By
(11),(12),(13) and (14), we have x1 = 1

2
(v′+♥i), x2 = 1

2
(−v′−♥i) =

−x1, x3 = 1

2
(v′ − ♥i) = x̄1, x4 = 1

2
(−v′ + ♥i) = −x̄1. Thus,

the roots of p(x + a1/4) consists of two distinct, nonzero, non-real
complex conjugate pairs.

I.2 β �= 0.
Then q(x) = x3− 2αx2 +(α2− 4γ)x+β2 = (x−u)(x− v)(x−w) ∈ Q[x]
has all distinct three roots u, v, w ∈ R \ {0}.

I.2.1 α2 − 4γ ≥ 0.

I.2.1.1 α ≤ 0. Since the coefficients of q(x) are all nonnegative,
by Descartes’ rule of signs, the three roots u, v, w ∈ R−, which by
(7), (8), (9) implies that u′, v′, w′ are three nonzero real numbers
with x1 + x2 = u′ �= ± v′ = ±(x1 + x3), x1 + x2 = u′ �= ± w′ =
±(x1 + x4), x1 + x3 = v′ �= ± w′ = ±(x1 + x4). By (11),(12),(13)
and (14), we have x1 = 1

2
(u′ + v′ + w′), x2 = 1

2
(u′ − v′ − w′), x3 =

1

2
(−u′ + v′ − w′), x4 = 1

2
(−u′ − v′ + w′). Hence, p(x + a1/4) has

four distinct real roots x1, x2, x3, x4.

I.2.1.2 α > 0. Since β2 > 0, we know that uvw > 0 and so
two roots of q(x), say u, v, are negative real numbers and one root,
say w, is a positive real number, which by (7), (8), (9) imply that
u′, v′ ∈ R, u′ �= ± v′ and w′ = ♥i, ♥ ∈ R \ {0}. Thus, x1 =
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1

2
(u′ + v′ +♥i), x2 = 1

2
(u′ − v′ −♥i), x3 = 1

2
(−u′ + v′ −♥i), x4 =

1

2
(−u′ − v′ + ♥i). Since p(x + a1/4) ∈ Q[x], its four complex roots

x1, x2, x3, x4 must occur in two conjugate pairs. From their shapes,
there are two possibilities, viz., (x̄1 = x2 and x̄4 = x3) or (x̄1 = x3

and x̄4 = x2).

If x̄1 = x2, then v′ = 0, u′ �= 0 and so x1 = 1

2
(u′+ i♥) ∈ C\R, x2 =

x̄1, x3 = −x1, x4 = −x̄1. If x̄1 = x3, then u′ = 0, v′ �= 0 and
we deduce that the solutions are of the same form as in the last
possibility, i.e., two distinct complex conjugate pairs.

I.2.2 α2 − 4γ < 0. Since β2 > 0, we know that uvw > 0 and so two
roots of q(x), say u, v are negative real numbers, and one root,
say w is a positive real number, which by (7), (8), (9) imply that
u′, v′ ∈ R, u′ �= ± v′ and w′ = ♥i, ♥ ∈ R \ {0}. The roots of
p(x+ a1/4) are of the same shape as those in the sub-case [I.2.1.2],
i.e., two distinct complex conjugate pairs.

Case II: D = 0

As seen in [4], the three roots u, v, w are real numbers and since

D = 16α4γ − 4α3β2 − 128α2γ2 + 144αβ2γ − 27β4 + 256γ3 ([6, p. 192])

= (u− v)2(u− w)2(v − w)2,

we must have
u = v or u = w or v = w. (15)

Recall that q(x) = x3−2αx2+(α2−4γ)x+β2 = (x−u)(x− v)(x−w) ∈ Q[x].
Let α∗ := −(α2 + 12γ)/3.

II.1 If α∗ = 0, then γ = −α2/12 and putting this into the expression for D,
we get β2 = −8α3/27. Substituting these values into the expression for
q(x), we find that q(x) = (x− 2α/3)3 showing that u = v = w = 2α/3.

II.1.1 If β = 0, then u = v = w = 0. By (7),(8) and (9), we get u′ = v′ =
w′ = 0. Thus, (11),(12),(13) and (14) yield x1 = x2 = x3 = x4 = 0.

II.1.2 If β �= 0, then β2 = −uvw = −u3 > 0, so that u = v = w ∈ R−. By
(7),(8) and (9), we get u′ = v′ = w′ ∈ R \ {0}. Thus, (11),(12),(13)

and (14) yield x1 = 3u′

2
, x2 = −u′

2
= x3 = x4.

II.2 If α∗ �= 0, we have u, v and w are not all the same.

II.2.1 If β = 0, then uvw = 0; without loss of generality, assume u = 0.
By (15), we deduce u = v = 0. From the shape of q(x), we must
have α2 − 4γ = 0 and w = 2α. By (7),(8) and (9), we get u′ = v′ =
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0, w′ = square root of − 2α, so that (11),(12),(13) and (14) yield
x1 = w′/2 = x4, x2 = −w′/2 = x3. Clearly, α �= 0, for otherwise
u = v = w = 0. Let r = 1

2

√
|−2α| ∈ R \ {0}. Taking into account

that α can be either positive or negative, we find that there are
two possible set of solutions {x1, x2, x3, x4} = {r, r, − r, − r} or
{ir, ir, − ir, − ir}.

II.2.2 If β �= 0, since β ∈ Q, we deduce that −uvw > 0 so that two
elements, say u, v ∈ R \ {0}, are of the same sign (and so by (15),
u = v), while w ∈ R \ {0} is negative.

If u = v ∈ R−, w ∈ R−, then (7),(8), (9) show that u′ = v′, w′ ∈
R \ {0}. Thus, (11),(12),(13),(14) yield four real roots x1 = 1

2
(2u′+

w′), x2 = −w′

2
= x3, x4 = 1

2
(−2u′ + w′). Apart from x2 = x3,

all other roots are distinct for if x1 = x2, then u′ = −w′ implying
that (v =) u = w, contradicting the fact that all three roots are
not the same; if x1 = x4, then u′ = 0, implying that u = v = 0
which contradicts β �= 0; if x2 = x4, then u′ = w′ implying that
(v =) u = w, again a contradiction.

If u = v ∈ R+, w ∈ R−, then (7),(8), (9) show that w′ = 2W1 ∈
R \ {0}, and we have u′ = ±v′ = ir2 (r2 ∈ R \ {0}). If u′ = v′, then
(11),(12),(13),(14) yield {x1, x2, x3, x4} = {W1 + ir2, −W1, −
W1, W1−ir2}, while if u

′ = −v′, we get {x1, x2, x3, x4} = {W1, −
W1 + ir2, −W1 − ir2, W1}. Clearly, x1 �= x2, x1 �= x4, x2 �= x4 in
both situations.

Case III: D < 0

As seen in [4], q(x) has one real root and two complex conjugate roots, say
u ∈ R, v = w ∈ C \ R.

III.1 β = 0 (so that uvw = 0).

If u �= 0, then v = w = 0, contradicting v = w ∈ C \ R and so we must
have u = 0. Thus, (7) yields u′ = 0. Since v = w, (8) and (9) show
that either v′ = w′ ∈ C \ R or v′ = −w′ ∈ C \ R. As (11),(12),(13)
and (14) are symmetric in v′ and w′, we can assume that v′ = w′ =
r3 + ir4 (r3, r4( �= 0) ∈ R), as the other alternative yields roots of the
same shape. Thus, (11),(12),(13) and (14) yield x1 = (v′ + w′)/2 =
r3 = −x2, x3 = (v′ − w′)/2 = ir4 = −x4. Here, r3 �= 0, for otherwise
x1 = x2 = 0 implying D = 0 which is a contradiction.

III.2 β �= 0 (so that u ∈ R \ {0}).

(a) If u < 0, then u′ = r ∈ R \ {0}. Similar to the last case, we can
assume that v′ = w′ = r3 + ir4 (r3, r4( �= 0) ∈ R), as the possibil-
ity v′ = −w′ yields roots of the same shape. Thus, (11),(12),(13)
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and (14) yield x1 = (r + 2r3)/2, x2 = (r − 2r3)/2, x3 = (−r +
i2r4)/2, x4 = (−r − i2r4)/2. Here again r3 �= 0 (so that x1 �= x2),
for otherwise x1 = x2 implying D = 0, a contradiction

(b) If u > 0, then u′ = ir (r ∈ R \ {0}). Again by choosing the sign of
u′ appropriately, we can assume that v′ = w′ = r3 + ir4 (r3, r4( �=
0) ∈ R). Thus, (11),(12),(13) and (14) yield x1 = (2r3 + ir)/2, x2 =
(−2r3 + ir)/2, x3 = i(−r+2r4)/2, x4 = i(−r− 2r4)/2. Since p(x+
a1/4) ∈ Q[x], its four complex roots x1, x2, x3, x4 must occur in two
conjugate pairs. From their shapes, there are two possibilities, viz.,
x1 = x3 or x1 = x4. In either case, we deduce that r4 = 0, a
contradiction. There is no solution in this case.

From the above information about the nature of the four zeros of p(x+ a1/4),
we deduce the following result about the four zeros of p(x).

Theorem 2. Let

p(x) :=x4 − a1x
3 − a2x

2 − a3x− a4

=(x− λ1)(x− λ2)(x− λ3)(x− λ4) ∈ Z[x], a4 �= 0

p (x+ a1/4) :=x4 + αx2 + βx+ γ = (x− x1)(x− x2)(x− x3)(x− x4) ∈ Q[x]

α =−
3a21 + 8a2

8
, α∗ := −

α2 + 12γ

3
, β = −

a31 + 4a1a2 + 8a3
8

,

γ =−
3a41 + 16a21a2 + 64a1a3 + 256a4

256

D =disc(p(x)) = disc
(
p
(
x+

a1
4

))

=16α4γ − 4α3β2 − 128α2γ2 + 144αβ2γ − 27β4 + 256γ3.

Then the nature of the four zeros of p(x) can be classified as

D < 0 two distinct real roots and two complex conjugate roots
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D > 0

β = 0

β �= 0

α2 − 4γ ≥ 0

α2 − 4γ < 0

α2 − 4γ ≥ 0

α2 − 4γ < 0

α ≤ 0

α > 0

two distinct nonzero complex conjugate pairs

α ≤ 0

α > 0

two distinct nonzero complex conjugate pairs

four distinct nonzero real numbers

two distinct nonzero complex conjugate pairs

four distinct nonzero real numbers

two distinct nonzero complex conjugate pairs

D = 0

α∗ = 0

α∗ �= 0

β = 0

β �= 0

β = 0

β �= 0

λ1 = λ2 = λ3 = λ4 ∈ R \ {0}

λ1, λ2 = λ3 = λ4 ∈ R \ {0}

{λ1, λ2, λ3, λ4} =
{

a1

4
+ r, a1

4
+ r, a1

4
− r, a1

4
− r

}
; r ∈ R \ {0}

{λ1, λ2, λ3, λ4} =
{

a1

4
+ ir, a1

4
+ ir, a1

4
− ir, a1

4
− ir

}
; r ∈ C \ R

λ1, λ2 = λ3, λ4 ∈ R \ {0}

λ2 = λ3 ∈ R \ {0};λ1, λ4 = λ̄1 ∈ C \ R

Using the information about the four zeros of p(x), we now summarize the
shapes of the sequence elements.

Theorem 3. Let {un}n≥0
be a sequence of elements satisfying a fourth order

linear recurrence of the form (1) (with k = 4), let p(x) as in Theorem 2 be its
characteristic polynomial having λ1, . . . , λ4 as all its (non-vanishing) zeros and
let D be the discriminant of p(x). Then the general term of the sequence takes
one of the following forms
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D > 0

C(r1r2r3r4) :un = Aλn
1 +Bλn

2 + Cλn
3 +Dλn

4 , where A,B,C,D ∈ R

C(z1z̄1z2z̄2) :un = Aλn
1 + Āλ̄n

1 +Bλn
2 + B̄λ̄n

2 , where A,B ∈ C

D = 0

C(r4
1
)

un = (A+Bn+ Cn2 +Dn3)λn
1 ,where A,B,C,D ∈ R

C(r1r
3

2
)

un = Aλn
1 + (B + Cn+Dn2)λn

2 , where A,B,C,D ∈ R

C(r2
1
r2
2
)

un = (A+Bn)λn
1 + (C +Dn)λn

2 , where A,B,C,D ∈ R

C(z2z̄2)
un = (A+Bn)λn + (Ā+ B̄n)λ̄n, where A,B ∈ C

C(r1r2r
2

3
)

un = Aλn
1 +Bλn

2 + (C +Dn)λn
3 , where A,B,C,D ∈ R

C(r2
1
zz̄)

un = (A+Bn)λn
1 + Cλn

3 + C̄λ̄n
3 , where A,B,∈ R, C ∈ C

D < 0
C(r1r2zz̄)

un = Aλn
1 +Bλn

2 + Cλn
3 + C̄λ̄n

3 , where A,B,∈ R, C ∈ C

3 Proof of Theorem 1 when Char(z) has only
real roots.

In this case, the general term of the sequence is

un = P1(n)λ
n
1 + P2(n)λ

n
2 + · · ·+ Pm(n)λn

m (n ≥ 0, m ≤ 4),

where λ1, λ2, . . . , λm are distinct nonzero real numbers and

Pi(n) = Ai,1+Ai,2n+· · ·+Ai,�in
�i−1 ∈ R[x] (�i ∈ N; i = 1, 2, . . . ,m; Ai,�i �= 0),

with �1 + �2 + · · ·+ �m = 4. We have two possibilities to consider.
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3.1 There are two roots λi, λj (i, j ∈ {1, 2, . . . ,m; i �= j) such
that |λi| = |λj|.

See the simple proof given in [5, Section 3.1].

3.2 All roots have different absolute values.

Without loss of generality, assume |λ1| > |λ2| > · · · > |λm|. Here,

un = λn
1 {P1(n) + P2(n)(λ2/λ1)

n + · · ·+ Pm(n)(λm/λ1)
n} (n ≥ 0).

We treat two subcases depending on the sign of λ1.

3.2.1 λ1 < 0.

Since sign(P1(n) +P2(n)(λ2/λ1)
n + · · ·+Pm(n)(λm/λ1)

n) = sign(A1,�1) when
n is large enough and sign(λn

1 ) oscillates, the sequence (un) is nonnegative only
when A1,�1 = 0, which contradicts the definition of A1,�1 �= 0.

3.3 λ1 > 0.

See the simple proof given in [5, Section 3.1].

4 Proof of Theorem 1 when Char(z) has non-
real roots.

4.1 C(z1z̄1z2z̄2)

In this case, the general term of the sequence is

un = Aλn
1 + Āλ̄n

1 +Bλn
2 + B̄λ̄n

2 (n ≥ 0), (16)

where A,B ∈ C and λ1, λ2 ∈ C \ R. Let λ1 = |λ1|e
iθ1 , λ2 = |λ2|e

iθ2 , A =
|A|eiϕ1 and B = |B|eiϕ2 where θ1, θ2, ϕ1, ϕ2 ∈ [−π, π], θ1, θ2 /∈ {−π, 0} so that

un = 2 {|λ1|
n|A| cos(ϕ1 + nθ1) + |B||λ2|

n cos(ϕ2 + nθ2)} .

Without loss of generality, we need only treat two possibilities |λ1| > |λ2| and
|λ1| = |λ2|.

4.1.1 |λ1| > |λ2| (> 0).

Here, un = 2|λ1|
n {|A| cos(ϕ1 + nθ1) + |B| (|λ2/λ1|)

n
cos(ϕ2 + nθ2)}. Thus,

(un) is nonnegative if and only if

|A| cos(ϕ1 + nθ1) + |B| (|λ2|/|λ1|)
n
cos(ϕ2 + nθ2) ≥ 0. (17)
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By Lemma 2.1 of [5], |A| cos(ϕ1 + nθ1) takes some fixed positive and negative
values for infinitely many n provided A �= 0, and since |B| (|λ2/λ1|)

n
cos(ϕ2 +

nθ2) → 0 (n → ∞), the requirement (17) holds if and only if A = 0, and so
un = Bλn

2 + B̄λ̄n
2 (n ≥ 0), which is of the form (HHH3) ([5, Lemma 2.3]).

4.1.2 |λ1| = |λ2|.

Here, un = 2|λ1|
n {|A| cos(ϕ1 + nθ1) + |B| cos(ϕ2 + nθ2)} . Notice that the ar-

guments used in the preceding subcase do not work here. This is the first
situation where our analysis has to get back to the shape of the roots of the
characteristic polynomial. Tracing back to the proofs of Theorem 2 and 3, we
see that the case C(z1z̄1z2z̄2) occurs in Case I: D > 0, with two distinct com-
plex conjugate pairs, which are labeled I.1.1.2, I.1.2, I.2.1.2 and I.2.2. Using
the notation of Theorem 2, the corresponding information is as follows:

• I.1.1.2 β = 0, α2 − 4γ ≥ 0 and α > 0. We have x1 = 1

2
(� + ♥)i, x2 =

− 1

2
(� + ♥)i = x̄1, x3 = 1

2
(� − ♥)i, x4 = − 1

2
(� − ♥)i = −x̄3, with

� �= ±♥ being two nonzero real numbers. The roots of the characteristic
polynomial, denoted for unambiguity by λ̃, are λ̃1 = a1

4
+ 1

2
(�+♥)i, λ̃2 =

a1

4
− 1

2
(�+♥)i =

¯̃
λ1, λ̃3 = a1

4
+ 1

2
(�−♥)i, λ̃4 = a1

4
− 1

2
(�−♥)i = −

¯̃
λ3.

Combining with the condition and notation of our on-going case, we get

|λ̃1|
2 = |λ̃3|

2 ⇐⇒
(a1
4

)2

+
1

4
(�+♥)2 =

(a1
4

)2

+
1

4
(�−♥)2

⇐⇒ �♥ = 0,

which is a contradiction and we are done in this case.

• I.1.2 β = 0, α2 − 4γ < 0. We have x1 = 1

2
(v′ + ♥i), x2 = 1

2
(−v′ −

♥i) = −x1, x3 = 1

2
(v′ − ♥i) = x̄1, x4 = 1

2
(−v′ + ♥i) = −x̄1. Then

λ̃1 =
(

a1

4
+ v′

2

)
+ ♥

2
i, λ̃2 =

(
a1

4
− v′

2

)
− ♥

2
i, λ̃3 =

(
a1

4
+ v′

2

)
− ♥

2
i =

¯̃
λ1, λ̃4 =

(
a1

4
− v′

2

)
+ ♥

2
i =

¯̃
λ2. Combining with the condition and

notation of our on-going case, we get

|λ̃1|
2 = |λ̃2|

2 ⇐⇒

(
a1
4

+
v′

2

)2

+

(
♥

2

)2

=

(
a1
4
−

v′

2

)2

+

(
♥

2

)2

⇐⇒
a1v

′

2
= 0 (v′ �= 0)⇐⇒ a1 = 0.

Thus, λ̃1 = v′

2
+ ♥

2
i, λ̃2 = − v′

2
− ♥

2
i = −λ̃1.

• I.2.1.2 β �= 0, α2 − 4γ ≥ 0 and α > 0. We have x1 = 1

2
(u′ + i♥) ∈

C \ R, x2 = x̄1, x3 = −x1, x4 = −x̄1 yielding a1

4
+ u′

2
+ i♥

2
= λ̃1 =



196 The positivity problem

¯̃
λ2,

a1

4
− u′

2
− i♥

2
= λ̃3 =

¯̃
λ4. Combining with the condition and notation

of our on-going case, we get

|λ̃1|
2 = |λ̃3|

2 ⇐⇒

(
a1
4

+
u′

2

)2

+

(
♥

2

)2

=

(
a1
4
−

u′

2

)2

+

(
♥

2

)2

⇐⇒
a1u

′

2
= 0 (u′ �= 0)⇐⇒ a1 = 0.

Thus, λ̃1 = u′

2
+ ♥

2
i, λ̃3 = −u′

2
− ♥

2
i = −λ̃1.

• I.2.2 β �= 0, α2− 4γ < 0. The roots of p(x+ a1/4) are of the same shape
as those in the subcase I.2.1.2.

Collecting together all possibilities in I.1.1.2, I.1.2, I.2.1.2 and I.2.2, the two
roots in (16) can only be of the form λ2 = −λ1 ∈ C\R, and the general term of
the sequence in (16) is thus of the form un = Aλn

1 +Āλ̄n
1 +B(−λ1)

n+B̄ ¯(−λ1)
n
,

i.e., for k ≥ 0,

u2k = (A+B)λ2k
1 + (Ā+ B̄)λ̄2k

1 , u2k+1 = (A−B)λ2k+1

1 + (Ā− B̄)λ̄2k+1

1 .

Both u2k and u2k+1 are of the form (HHH3) and so are decidable by [5, Lemma
2.3].

4.2 C(z2z̄2)

In this case, the general term of the sequence is un = (A + Bn)λn
1 + (Ā +

B̄n)λ̄n
1 (n ≥ 0), where A,B ∈ C and λ1 ∈ C \ R. Let λ1 = |λ1|e

iθ, A =
|A|eiϕ1 , B = |B|eiϕ2 where θ, ϕ1, ϕ2 ∈ [−π, π), θ �= {−π, 0}. Thus,

un = 2|λ1|
n {|A| cos(ϕ1 + nθ) + n|B| cos(ϕ2 + nθ)} .

Then the sequence (un) is nonnegative if and only if for all n,

|A| cos(ϕ1 + nθ) + n|B| cos(ϕ2 + nθ) ≥ 0. (18)

Since sign(|A| cos(ϕ1 + nθ) + n|B| cos(ϕ2 + nθ)) = sign(cos(ϕ2 + nθ)) when n
is large enough, provided B cos(ϕ2 +nθ) �= 0. By [5, Lemma 2.2], cos(ϕ2 +nθ)
takes some positive and some negative values for infinitely many n ∈ N. Thus,
(18) holds only when B = 0, and so un = Aλn

1 + Āλ̄n
1 , which is of the form

(HHH3) ([5, Lemma 2.3]).

4.3 C(r21zz̄)

In this case, the general term of the sequence is un = (A + Bn)λn
1 + Cλn

3 +
C̄λ̄n

3 (n ≥ 0), where A,B, λ1( �= 0) ∈ R, C ∈ C and λ3 ∈ C \ R. Let λ3 =
|λ3|e

iθ, C = |C|eiϕ where θ, ϕ ∈ [−π, π), θ /∈ {−π, 0} so that

un = (A+Bn)λn
1 + 2|C||λ3|

n cos(ϕ+ nθ).
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We subdivide into three subcases depending on the absolute values of |λ1| and
|λ3|.

4.3.1 |λ1| = |λ3|.

There are two further possibilities.
4.3.1(1) λ1 < 0.

Here, un = |λ1|
n{(−1)n(A+Bn) + 2|C| cos(ϕ+ nθ)} (n ≥ 0). Since

(−1)n(A+Bn) + 2|C| cos(ϕ+ nθ)→ ±∞ (n→∞)

according as n is even or odd provided B �= 0, the sequence (un) is nonnegative
only when B = 0 and so un = Aλn

1 + Cλn
3 + C̄λ̄n

3 , which is of the form (LT4)
([5, Lemma2.3]).

4.3.1(2) λ1 > 0. See subcase 1 of C(r21zz̄) in [5].

4.3.2 |λ1| > |λ3|.

Rewrite the general term of the sequence as

un = λn
1 {A+Bn+ 2|C|(|λ3|/λ1)

n cos(ϕ+ nθ)} (n ≥ 0).

We consider two possibilities corresponding to the signs of λ1.
4.3.2(1) λ1 < 0. Since sign(A+Bn+2|C|(|λ3|/λ1)

n cos(ϕ+nθ)) = sign(B)
when n is large enough provided B �= 0, and sign(λn

1 ) oscillates, the sequence
(un) is nonnegative only when B = 0, and so un = Aλn

1 + Cλn
3 + C̄λ̄n

3 , which
is of the form (LT4) [Lemma 2.3 of [5]].

4.3.2(2) λ1 > 0. See subcase 2 of C(r21zz̄) in [5].

4.3.3 |λ1| < |λ3|.

Rewrite the general term of the sequence as

un = |λ3|
n {(A+Bn)(λ1/|λ3|)

n + 2|C| cos(ϕ+ nθ)} (n ≥ 0).

Observe that (A+Bn)(λ1/|λ3|)
n → 0 (n→∞). By Lemma 2.2 of [5], cos(ϕ+

nθ) takes some fixed positive and some fixed negative values for infinitely many
n. Thus, the sequence (un) is nonnegative only when C = 0, yielding un =
(A+Bn)λn

1 , which is of the form (HHH2) [Lemma 2.3 of [5]].

4.4 C(r1r2zz̄)

In this case, the general term of the sequence is un = Aλn
1 + Bλn

2 + Cλn
3 +

C̄λ̄n
3 (n ≥ 0), where A,B ∈ R, C ∈ C, λ1, λ2 ∈ R \ {0} and λ3 ∈ C \ R.

Let λ3 = |λ3|e
iθ, C = |C|eiϕ where θ, ϕ ∈ [−π, π), θ /∈ {−π, 0} so that

un = Aλn
1 +Bλn

2 +2|C||λ3|
n cos(ϕ+nθ). We split our consideration into three

possibilities.
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1. The three λ’s have the same absolute values, i.e., |λ1| = |λ2| = |λ3|.

2. There are two λi’s having the same absolute value, i.e., |λ1| = |λ2| or
|λ1| = |λ3| or |λ2| = |λ3|.

3. All three roots λ1, λ2 and λ3 have different absolute values.

4.4.1 |λ1| = |λ2| = |λ3|.

See subcase 1, of C(r1r2zz̄) in [5].

4.4.2 |λ1| = |λ2| or |λ1| = |λ3| or |λ2| = |λ3|.

We need only treat the first two cases as the third is similar to the second.
4.4.2(1) |λ1| = |λ2|. See subcase 3.1, of C(r1r2zz̄) in [5].
4.4.2(2) |λ1| = |λ3|. Here, un = Aλn

1+2|C| cos(ϕ+nθ)|λ1|
n+Bλn

2 (n ≥ 0).
We subdivide into two further sub-cases depending on whether |λ1| > |λ2|.

4.4.2(2.1) |λ1| > |λ2|.
We consider two possibilities corresponding to the signs of λ1.

• λ1 < 0. Rewrite the general term of the sequence as

un = |λ1|
n {(−1)nA+ 2|C| cos(ϕ+ nθ) +B(λ2/|λ1|)

n} (n ≥ 0).

The sequence (un) is nonnegative if and only if for all k ∈ N ∪ {0} we
must have

2|C| cos(ϕ+ (2k + 1)θ) +B(λ2/|λ1|)
2k+1 ≥ A (19)

and
A ≥ −2|C| cos(ϕ+ 2kθ)−B(λ2/|λ1|)

2k. (20)

We consider first the case θ �= −π/2. Since B(λ2/|λ1|)
n → 0 (n → ∞),

by Lemma 2.2 of [5] and the remark after it, as k varies over N∪{0}, both
cos(ϕ + 2kθ) and cos(ϕ + (2k + 1)θ) take some fixed positive and some
fixed negative values infinitely often. Thus, the relations (19) and (20)
hold only when A = C = 0 yielding un = Bλn

2 , and so is nonnegative
only when B ≥ 0 and λ2 > 0. Next, for the case θ = −π/2, by Lemma
2.2 of [5] and the remark after it, (19) and (20) become when k1 is even

−2|C| cos(ϕ)−B(λ2/|λ1|)
2k1 ≤ A ≤ 2|C| cos(ϕ+ θ) +B(λ2/|λ1|)

2k1+1

(21)
and when k2 is odd

2|C| cos(ϕ)−B(λ2/|λ1|)
2k2 ≤ A ≤ −2|C| cos(ϕ+ θ) +B(λ2/|λ1|)

2k2+1.
(22)
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Combining (21) with (22), we get

−B(λ2/|λ1|)
2k1 −B(λ2/|λ1|)

2k2 ≤ 2A

≤ B(λ2/|λ1|)
2k1+1 +B(λ2/|λ1|)

2k2+1.

Since the bounds on both sides tend to 0 as k1, k2 →∞, we deduce that
A = 0 and so un = Bλn

2 +Cλn
3 +C̄λ̄n

3 , which is of the form (LT4) [Lemma
2.3 of [5]].

• λ1 > 0. See subcase 3.3 in C(r1r2zz̄) of [5].

4.4.2(2.2) |λ1| < |λ2|.
We consider two possibility corresponding to the sign of λ2.
• λ2 < 0. Here, un = λn

2 {A(λ1/λ2)
n + 2|C|(|λ1|/λ2)

n cos(ϕ+ nθ) +B} ,
(n ≥ 0). Observe that A(λ1/λ2)

n + 2|C|(|λ1|/λ2)
n cos(ϕ+ nθ) +B → B (n→

∞), provided B �= 0. Since λn
2 oscillates between ±|λ2|, then the sequence (un)

is nonnegative only when B = 0, and so un = Aλn
1 + Cλn

3 + C̄λ̄n
3 , which is of

the form (LT4) [Lemma 2.3 of [5]].
• λ2 > 0. See subcase 3.2 in C(r1r2zz̄) of [5].

4.4.3 All three roots λ1, λ2 and λ3 have different absolute values.

Without loss of generality, assume |λ1| > |λ2|. Here,

un = λn
1 (A+B(λ2/λ1)

n) + 2|C||λ3|
n cos(ϕ+ nθ) (n ≥ 0).

We subdivide into two further subcases depending on whether |λ1| > |λ3|.
4.4.3(1) |λ1| > |λ3|. Rewrite the general term of the sequence as

un = λn
1 {A+B(λ2/λ1)

n + 2|C|(|λ3|/λ1)
n cos(ϕ+ nθ)} (n ≥ 0).

We consider to possibilities corresponding to the signs of λ1.
• λ1 < 0. Since sign(A+B(λ2/λ1)

n+2|C|(|λ3|/λ1)
n cos(ϕ+nθ)) = sign(A)

when n is large enough provided A �= 0, and sign(λn
1 ) oscillates the sequence

(un) is nonnegative only when A = 0 and so un = Bλn
2 +Cλn

3 + C̄λ̄n
3 , which is

of the form (LT4) [Lemma 2.3 of [5]].
• λ1 > 0. See subcase 2 in C(r1r2zz̄) of [5].
4.4.3(2) |λ1| < |λ3|. Rewrite the general term of the sequence as

un = |λ3|
n {(A+B(λ2/λ1)

n)(λ1/|λ3|)
n + 2|C| cos(ϕ+ nθ)} (n ≥ 0).

Observe that (A + B(λ2/λ1)
n)(λ1/|λ3|)

n → 0 (n → ∞). Next, by Lemma
2.2 of [5], cos(ϕ+ nθ) takes some fixed positive and some fixed negative values
infinitely often. Thus, the sequence (un) is nonnegative only when C = 0
yielding un = Aλn

1 +Bλn
2 , which is of the form (HHH1) [Lemma 2.3 of [5]].
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