POLYNOMIAL-ARITHMETIC FUNCTIONS

Narakorn Rompurk Kanasri
Department of Mathematics, Khon Kaen University
Khon Kaen 40002, Thailand.
email: naraka@kku.ac.th

Abstract

Let $\mathcal{A}(\Omega)$ denote the ring of arithmetic functions $f: \Omega \rightarrow \mathbb{C}$, where Ω is the set of monic polynomials over a finite field. Some characterizations of completely multiplicative arithmetic functions in $\mathcal{A}(\Omega)$, using distributive property, are established. A necessary and sufficient condition for the $\alpha^{\text {th }}$ power function in $\mathcal{A}(\Omega)$ to be completely multiplicative is given for all nonzero real numbers α.

1 Introduction and preliminaries

Let $\mathbb{F}_{p^{n}}[x]$ be the set of all polynomials over a finite field $\mathbb{F}_{p^{n}}$ where p is a prime and n is a positive integer. For $M, N \in \mathbb{F}_{p^{n}}[x]$, we define a relation on $\mathbb{F}_{p^{n}}[x]$ by

$$
M \sim N \text { if and only if } M=a N \text { for some } a \in \mathbb{F}_{p^{n}} \backslash\{0\}
$$

It is easily checked that this is an equivalence relation. Let Ω denote the set of all equivalence classes of nonzero polynomials in $\mathbb{F}_{p^{n}}[x]$. For convenience, we regard Ω as the set of monic polynomials over a finite field $\mathbb{F}_{p^{n}}$, with implicit understanding that these polynomials represent equivalence classes. Hence, a polynomial in Ω merely refers to a monic polynomial. It is well-known ([11]) that, each nonconstant polynomial $M \in \Omega$ can be uniquely written in the form

$$
M=P_{1}^{a_{1}} P_{2}^{a_{2}} \cdots P_{k}^{a_{k}},
$$

where $P_{1}, P_{2}, \ldots, P_{k}$ are irreducible polynomials in Ω and $a_{1}, a_{2}, \ldots, a_{k}, k \in \mathbb{N}$.
By a polynomial-arithmetic function, ([12]), we mean a mapping f from the set Ω into the field of complex numbers \mathbb{C}. Let $(\mathcal{A}(\Omega),+, *)$ denote the

[^0]set of polynomial-arithmetic functions equipped with addition and Dirichlet convolution defined over Ω, respectively, by
\[

$$
\begin{array}{r}
(f+g)(M)=f(M)+g(M) \\
(f * g)(M)=\sum_{D \mid M}^{(\Omega)} f(D) g\left(\frac{M}{D}\right)
\end{array}
$$
\]

for all $M \in \Omega$, where the summation is over all $D \in \Omega$ which are divisors of M. Throughout, the notation $\sum^{(\Omega)}$ signifies a summation taken over monic polynomials in Ω. As in the case of classical arithmetic functions, we know that $(\mathcal{A}(\Omega),+, *)$ is an integral domain with identity $I_{\Omega}([12])$, defined by

$$
I_{\Omega}(M)= \begin{cases}1 & \text { if } \quad M=1_{\Omega} \\ 0 & \text { otherwise }\end{cases}
$$

where 1_{Ω} is the identity element in $\mathbb{F}_{p^{n}}$.
We have shown in [5], that the set

$$
\mathcal{U}(\Omega):=\left\{f \in \mathcal{A}(\Omega): f\left(1_{\Omega}\right) \neq 0\right\}
$$

is the group of units in $\mathcal{A}(\Omega)$. That is, for every $f \in \mathcal{U}(\Omega)$, there is $f^{-1} \in \mathcal{A}(\Omega)$, the inverse of f with respect to the Dirichlet convolution, such that $f * f^{-1}=I_{\Omega}$.

A function $f \in \mathcal{A}(\Omega)$ is said to be multiplicative if $f \neq 0$ and

$$
\begin{equation*}
f(M N)=f(M) f(N) \tag{1}
\end{equation*}
$$

whenever g.c.d. $(M, N)=1_{\Omega}$ and f is said to be completely multiplicative if (1) holds for all pairs of polynomials $M, N \in \Omega([12])$. We have seen in [12] that the set of multiplicative functions is a subgroup of the group of units $\mathcal{U}(\Omega)$. Hence if f is multiplicative, then so is f^{-1}. A polynomial-arithmetic function $a \in \mathcal{A}(\Omega)$ is said to be completely additive if

$$
a(M N)=a(M)+a(N)
$$

for all $M, N \in \Omega([5])$. Note that

- if $f\left(1_{\Omega}\right) \neq 0$, then $f^{-1}\left(1_{\Omega}\right)=1$ and $f^{-1}(P)=-f(P)$ for all irreducible polynomial P in Ω;
- if f is multiplicative, then $f\left(1_{\Omega}\right)=1$;
- if $a \in \mathcal{A}(\Omega)$ is completely additive, then $a\left(1_{\Omega}\right)=0$.

Next, we recall the definitions of the polynomial-logarithmic operator in [5], the polynomial-exponential operator, the polynomial-power function and the generalized polynomial-Möbius function in [4].

For notational convenience, let
$\mathcal{A}_{1}(\Omega)=\left\{f \in \mathcal{A}(\Omega): f\left(1_{\Omega}\right) \in \mathbb{R}\right\}$ and $\mathcal{P}(\Omega)=\left\{f \in \mathcal{A}(\Omega): f\left(1_{\Omega}\right)>0\right\} \subseteq \mathcal{U}(\Omega)$.
It is not difficult to show that $\left(\mathcal{A}_{1}(\Omega),+\right)$ and $(\mathcal{P}(\Omega), *)$ are groups.
Definition 1. ([5]) Let $a \in \mathcal{A}(\Omega)$ be a completely additive polynomial-arithmetic function for which $a(M) \neq 0$ for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$. The polynomial-logarithmic operator (associated with a) is the map $\log _{\Omega}: \mathcal{P}(\Omega) \rightarrow \mathcal{A}_{1}(\Omega)$, defined by

$$
\begin{align*}
\log _{\Omega} f\left(1_{\Omega}\right) & =\log f\left(1_{\Omega}\right) \\
\log _{\Omega} f(M) & =\frac{1}{a(M)} \sum_{D \mid M}^{(\Omega)} f(D) f^{-1}\left(\frac{M}{D}\right) a(D) \tag{2}\\
& =\frac{1}{a(M)}\left(d f * f^{-1}\right)(M) \tag{3}
\end{align*}
$$

for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$ where the right-hand side of the first equation denotes the real logarithmic value and $d f(M)=f(M) a(M)$ for all $M \in \Omega$.

We have shown in [5] that $\log _{\Omega}$ is a group isomorphism from $(\mathcal{P}(\Omega), *)$ onto $\left(\mathcal{A}_{1}(\Omega),+\right)$, and hence

$$
\begin{equation*}
\log _{\Omega}(f * g)=\log _{\Omega} f+\log _{\Omega} g \quad(f, g \in \mathcal{P}(\Omega)) \tag{4}
\end{equation*}
$$

Definition 2. ([4]) The polynomial-exponential operator is the map

$$
\operatorname{Exp}_{\Omega}: \mathcal{A}_{1}(\Omega) \rightarrow \mathcal{P}(\Omega)
$$

defined by $\operatorname{Exp}_{\Omega}=\left(\log _{\Omega}\right)^{-1}$.
Note that

$$
\begin{equation*}
\operatorname{Exp}_{\Omega}(f+g)=\operatorname{Exp}_{\Omega}(f) * \operatorname{Exp}_{\Omega}(g) \quad\left(f, g \in \mathcal{A}_{1}(\Omega)\right) \tag{5}
\end{equation*}
$$

Definition 3. ([4]) For $f \in \mathcal{P}(\Omega)$ and $\alpha \in \mathbb{R}$, the $\alpha^{\text {th }}$ polynomial-power function is defined as

$$
\begin{equation*}
f^{\alpha}=\operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right) \in \mathcal{P}(\Omega) \tag{6}
\end{equation*}
$$

Clearly, $f^{0}=I_{\Omega}$ and $f^{1}=f$. For $r \in \mathbb{N}$, using (5) and (6), we obtain

$$
\begin{aligned}
f^{r} & =\operatorname{Exp}_{\Omega}\left(r \log _{\Omega} f\right) \\
& =\operatorname{Exp}_{\Omega}\left(\log _{\Omega} f+\cdots+\log _{\Omega} f\right) \\
& =\operatorname{Exp}_{\Omega}\left(\log _{\Omega} f\right) * \cdots * \operatorname{Exp}_{\Omega}\left(\log _{\Omega} f\right) \\
& =f * \cdots * f \quad(r \text { factors })
\end{aligned}
$$

We can show similarly that

$$
f^{-r}=f^{-1} * f^{-1} * \cdots * f^{-1} \quad(r \text { factors })
$$

where f^{-1} is the inverse of f with respect to the Dirichlet convolution. It is easily checked that

$$
\begin{gather*}
f^{\alpha+\beta}=f^{\alpha} * f^{\beta} \tag{7}\\
\left(f^{\alpha}\right)^{\beta}=f^{\alpha \beta} \tag{8}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(f^{\alpha}\right)^{-1}=f^{-\alpha} \tag{9}
\end{equation*}
$$

for all $f \in \mathcal{P}(\Omega)$ and $\alpha, \beta \in \mathbb{R}$.
We have shown in [4] that for $f \in \mathcal{A}_{1}(\Omega), \operatorname{Exp}_{\Omega} f$ is uniquely determined by the formulas

$$
\begin{align*}
& \operatorname{Exp}_{\Omega} f\left(1_{\Omega}\right)=\exp \left(f\left(1_{\Omega}\right)\right) \\
& \operatorname{Exp}_{\Omega} f(M)=\frac{1}{a(M)} \sum_{D \mid M}^{(\Omega)} \operatorname{Exp}_{\Omega} f(D) f\left(\frac{M}{D}\right) a\left(\frac{M}{D}\right) \tag{10}
\end{align*}
$$

for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$, where a is a completely additive polynomial-arithmetic function for which $a(M) \neq 0$ for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$. Observe that if $f\left(1_{\Omega}\right)=1$, then
$f^{\alpha}\left(1_{\Omega}\right)=\operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right)\left(1_{\Omega}\right)=\exp \left(\left(\alpha \log _{\Omega} f\right)\left(1_{\Omega}\right)\right)=\exp \left(\alpha \log f\left(1_{\Omega}\right)\right)=1$.
for all $\alpha \in \mathbb{R}$.
Definition 4. ([4]) For $\alpha \in \mathbb{R}$, the generalized polynomial-Möbius function $\mu_{\alpha}^{\Omega}: \Omega \rightarrow \mathbb{C}$ is defined by

$$
\begin{equation*}
\mu_{\alpha}^{\Omega}(M)=\prod_{i=1}^{k}\binom{\alpha}{a_{i}}(-1)^{a_{i}}, \quad \mu_{\alpha}^{\Omega}\left(1_{\Omega}\right)=1 \tag{12}
\end{equation*}
$$

where $M=P_{1}^{a_{1}} P_{2}^{a_{2}} \cdots P_{k}^{a_{k}}, P_{1}, P_{2}, \ldots, P_{k}$ are irreducible polynomials in Ω, $a_{1}, a_{2}, \ldots, a_{k}, k \in \mathbb{N}$ and

$$
\begin{equation*}
\binom{\alpha}{0}=1,\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} \quad(n \in \mathbb{N}) \tag{13}
\end{equation*}
$$

Observe that $\mu_{0}^{\Omega}=I_{\Omega}, \mu_{-1}^{\Omega}=u$, where $u(M)=1$ for all $M \in \Omega$, and $\mu_{1}^{\Omega}=\mu^{\Omega}$, the polynomial-Möbius function ([12]) defined by

$$
\mu^{\Omega}(M)= \begin{cases}1 & \text { if } M=1 \Omega \\ 0 & \text { if } P^{2} \mid M, P \text { irreducible polynomial in } \Omega \\ (-1)^{k} & \text { if } M=P_{1} P_{2} \cdots P_{k}, \text { a product of distinct irreducible } \\ & \text { polynomials in } \Omega\end{cases}
$$

Clearly, μ_{α}^{Ω} is multiplicative for all real numbers α. It is easy to show that

$$
\begin{equation*}
\mu_{\alpha}^{\Omega} * \mu_{\beta}^{\Omega}=\mu_{\alpha+\beta}^{\Omega} \tag{14}
\end{equation*}
$$

for all real numbers α, β. Note that

$$
\mu^{\Omega} * u=I_{\Omega} \text { and } \mu_{-\alpha}^{\Omega}=\left(\mu_{\alpha}^{\Omega}\right)^{-1}
$$

for all real numbers α.
In the classical case, the distributive property of completely multiplicative functions discovered by J. Lambek ([6]), asserts that an arithmetic function f is completely multiplicative if and only if it distributes over every Dirichlet product. It is shown in [4] that such Lambek's result holds in the polynomial case. Afterward, E. Langford points out in [7] an interesting characterization of completely multiplicative functions f using partially discriminative products, which states that given a multiplicative function f, then f is completely multiplicative if and only if it distributes over some partially discriminative products. In 2004, V. Laohakosol and N. Pabhapote ([8]) gave a necessary and sufficient condition for the $\alpha^{t h}$ power function f^{α} to be completely multiplicative. It states that given a multiplicative function f and $\alpha \in \mathbb{R} \backslash\{0\}$, then f^{α} is completely multiplicative if and only if $f\left(p^{k}\right)=\binom{-1 / \alpha}{k}(-\alpha)^{k} f(p)^{k}$ for all primes p and all $k \in \mathbb{N}$.

The first objective of this paper is to establish some characterizations of completely multiplicative polynomial-arithmetic functions through their distributive property using polynomial-partially discriminative products and generalized polynomial-Möbius function. The second objective is to give a necessary and sufficient condition for the $\alpha^{t h}$ polynomial-power function to be completely multiplicative for all nonzero real numbers α.

2 Basic results

To facilitate the proof of our main results, we recall the following results in [5] and [4].

Proposition 1. ([5]) If $f \in \mathcal{A}(\Omega)$ is multiplicative, then f is completely multiplicative if and only if $f\left(P^{k}\right)=f(P)^{k}$ for all irreducible polynomials $P \in \Omega$ and for all $k \in \mathbb{N}$.

Proposition 2. ([5]) Let $f \in \mathcal{A}(\Omega)$ be multiplicative. Then f is completely multiplicative if and only if $f^{-1}=f \mu^{\Omega}$.

Theorem 1. ([5]) Let $f \in \mathcal{P}(\Omega)$. Then f is multiplicative if and only if $\log f(M)=0$ whenever M is not a power of an irreducible polynomial.

Lemma 1. ([4]) A multiplicative function $f \in \mathcal{A}(\Omega)$ is completely multiplicative if and only if

$$
f(g * h)=f g * f h
$$

for all $g, h \in \mathcal{A}(\Omega)$.
Theorem 2. ([4]) Let $f \in \mathcal{P}(\Omega)$ be multiplicative and $\alpha \in \mathbb{R}$. We have
(i) if f is completely multiplicative then $f^{\alpha}=\mu_{-\alpha}^{\Omega} f$;
(ii) for $\alpha \notin\{0,1\}$, if $f^{\alpha}=\mu_{-\alpha}^{\Omega} f$, then f is completely multiplicative.

3 Completely multiplicative polynomial-arithmetic functions

In this section, we first define the definition of partially discriminative products for polynomial-arithmetic functions similar to the classical cases, defined by E. Langford ([7]).

Definition 5. For polynomial-arithmetic functions g and h, a Dirichlet product $g * h$ is called polynomial-partially discriminative if for every irreducible polynomial $P \in \Omega$ and $k \in \mathbb{N}$,

$$
(g * h)\left(P^{k}\right)=g\left(1_{\Omega}\right) h\left(P^{k}\right)+g\left(P^{k}\right) h\left(1_{\Omega}\right),
$$

then $k=1$.
Note that $\mu^{\Omega} * u$ is a polynomial-partially discriminative product.
Using Proposition 1, Lemma 1 and the same proof as in [7], we have the following theorem.

Theorem 3. Suppose that $f \in \mathcal{A}(\Omega)$ is multiplicative. Then f is completely multiplicative if and only if f distributes over some polynomial-partially discriminative product $g * h$.

The following two corollaries are immediate consequences of Proposition 2 and Theorem 3, respectively.

Corollary 1. For any multiplicative function $f \in \mathcal{A}(\Omega), f$ is completely multiplicative if and only if f distributes over $\mu^{\Omega} * u\left(=I_{\Omega}\right)$.

Proof. Let $f \in \mathcal{A}(\Omega)$ be a multiplicative function. Then $f\left(1_{\Omega}\right)=1$ and using Proposition 2, we obtain

$$
\begin{aligned}
f \text { distributes over } \mu^{\Omega} * u & \Leftrightarrow f\left(\mu^{\Omega} * u\right)=f \mu^{\Omega} * f u \\
& \Leftrightarrow f I_{\Omega}=f \mu^{\Omega} * f u \\
& \Leftrightarrow I_{\Omega}=f \mu^{\Omega} * f \\
& \Leftrightarrow f^{-1}=f \mu^{\Omega} \\
& \Leftrightarrow f \text { is completey multiplicative. }
\end{aligned}
$$

Corollary 2. Let f be a multiplicative polynomial-arithmetic function, g be a polynomial-arithmetic function with $g\left(1_{\Omega}\right)=1$ and $\alpha \in \mathbb{R} \backslash\{0\}$.
A. If f is completely multiplicative, then

$$
f\left(g * \mu_{\alpha}^{\Omega}\right)=f g * f \mu_{\alpha}^{\Omega}=f g * f^{-\alpha}
$$

B. Assume that

$$
\begin{equation*}
\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)-\mu_{\alpha}^{\Omega}\left(P^{k}\right)-g\left(P^{k}\right) \neq 0 \tag{15}
\end{equation*}
$$

for all integers $k \geq 2$ and for all irreducible polynomials P in Ω. If

$$
f\left(g * \mu_{\alpha}^{\Omega}\right)=f g * f \mu_{\alpha}^{\Omega}
$$

then f is completely multiplicative.
Proof. A. Assume that f is completely multiplicative. By Lemma 1 and Theorem 2(i), we have

$$
f\left(g * \mu_{\alpha}^{\Omega}\right)=f g * f \mu_{\alpha}^{\Omega}=f g * f^{-\alpha}
$$

B. Since $g\left(1_{\Omega}\right)=1$, then the condition (15) implies that the Dirichlet product $g * \mu_{\alpha}^{\Omega}$ is a polynomial-partially discriminative. Hence part B. follows from Theorem 3.

In the proof of the theorem in [3], P . Haukkanen proved that if f is an arithmetic function with $f(1)>0$ and n is a positive integer, then $f^{\alpha}(n)$ is a polynomial in α. Now for the next main result, we prove this fact for the polynomial case as follows:

Lemma 2. For $\alpha \in \mathbb{R}$, if f is a multiplicative function in $\mathcal{A}(\Omega)$, then $f^{\alpha}(M)$ is a polynomial in α for fixed $M \in \Omega$.

Proof. Assume that $f \in \mathcal{A}(\Omega)$ is a multiplicative function. Then $f\left(1_{\Omega}\right)=1$. Let $M \in \Omega$ be fixed. We will prove that $f^{\alpha}(M)$ is a polynomial in α by induction on $\operatorname{deg}(M)$. If $\operatorname{deg}(M)=0$, then $M=1_{\Omega}$ and so $f^{\alpha}\left(1_{\Omega}\right)=1$ is a
constant polynomial. Assume that $f^{\alpha}(D)$ is a polynomial in α for all $D \in \Omega$ such that $\operatorname{deg}(D)<\operatorname{deg}(M)$. Now

$$
\begin{equation*}
f^{\alpha}=\operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right), \tag{16}
\end{equation*}
$$

where $E x p_{\Omega}$ is the polynomial-exponential operator and $\log _{\Omega}$ is the polynomiallogarithmic operator (associated with a completely additive polynomial-arithmetic function a). Using (16), (10) and $a\left(1_{\Omega}\right)=0$, we obtain

$$
\begin{aligned}
f^{\alpha}(M) & =\operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right)(M) \\
& =\frac{1}{a(M)} \sum_{D \mid M}^{(\Omega)} \operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right)(D)\left(\alpha \log _{\Omega} f\right)\left(\frac{M}{D}\right) a\left(\frac{M}{D}\right) \\
& =\frac{1}{a(M)} \sum_{D \mid M}^{(\Omega)} f^{\alpha}(D)\left(\alpha \log _{\Omega} f\right)\left(\frac{M}{D}\right) a\left(\frac{M}{D}\right) \\
& =\frac{1}{a(M)} \sum_{D \mid M, D \neq M}(\Omega) f^{\alpha}(D)\left(\alpha \log _{\Omega} f\right)\left(\frac{M}{D}\right) a\left(\frac{M}{D}\right),
\end{aligned}
$$

and the desired result follows from the induction hypothesis.
The following Theorem is our second main result.
Theorem 4. Let $f \in \mathcal{A}(\Omega)$ be a multiplicative function, g a polynomialarithmetic function with $g\left(1_{\Omega}\right)=1$ and $\alpha \in \mathbb{R} \backslash\{0\}$. Assume that

$$
\begin{equation*}
\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)-g\left(P^{k}\right)+\alpha \neq 0 \tag{17}
\end{equation*}
$$

for all integers $k \geq 2$ and for all irreducible polynomials P in Ω. If

$$
\begin{equation*}
f\left(g * \mu_{\alpha}^{\Omega}\right)=f g * f^{-\alpha}, \tag{18}
\end{equation*}
$$

then f is completely multiplicative.
Proof. Since $f \in \mathcal{A}(\Omega)$ is a multiplicative function, we have $f\left(1_{\Omega}\right)=1$. To show that f is completely multiplicative, it suffices to show that

$$
\begin{equation*}
f\left(P^{k}\right)=f(P)^{k} \tag{19}
\end{equation*}
$$

for all irreducible polynomials $P \in \Omega$ and for all $k \in \mathbb{N}$. By Proposition 1, we prove (19) by induction on k. It is clear for $k=1$, so assume that $k \geq 2$ and $f\left(P^{i}\right)=f(P)^{i}$ for all $i \in\{1, \ldots, k-1\}$. Using (7) and $f^{0}=I_{\Omega}$, rewrite (18) in an equivalent form as

$$
f\left(g * \mu_{\alpha}^{\Omega}\right) * f^{\alpha}=f g .
$$

Since $f\left(1_{\Omega}\right)=g\left(1_{\Omega}\right)=\mu_{\alpha}^{\Omega}\left(1_{\Omega}\right)=f^{\alpha}\left(1_{\Omega}\right)=1$, we get

$$
\begin{align*}
f g\left(P^{k}\right)= & f\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)+f\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k-1}\right) f^{\alpha}(P) \\
& +\cdots+f\left(g * \mu_{\alpha}^{\Omega}\right)(P) f^{\alpha}\left(P^{k-1}\right)+f^{\alpha}\left(P^{k}\right) . \tag{20}
\end{align*}
$$

We pause to note two important facts.
Fact 1. If $f\left(P^{i}\right)=f(P)^{i}$ for $1 \leq i \leq j$, then

$$
f^{r}\left(P^{j}\right)=\sum_{i_{1}+\cdots+i_{r}=j} f\left(P^{i_{1}}\right) \cdots f\left(P^{i_{r}}\right)=f(P)^{j}\binom{r+j-1}{j}
$$

for all $r \in \mathbb{N}$.
Fact 2. For $j \in \mathbb{N}$, we have

$$
\mu_{-\alpha}^{\Omega}\left(P^{j}\right)=\binom{-\alpha}{j}(-1)^{j}=\binom{\alpha+j-1}{j}
$$

for all $\alpha \in \mathbb{R}$.
Using induction hypothesis, Fact 1 and Fact 2, we get that

$$
\begin{equation*}
f^{r}\left(P^{i}\right)=f(P)^{i}\binom{r+i-1}{i}=f(P)^{i} \mu_{-r}^{\Omega}\left(P^{i}\right) \quad(i=1, \ldots, k-1) \tag{21}
\end{equation*}
$$

for all $r \in \mathbb{N}$. It follows by induction hypothesis and Fact 2 that

$$
\begin{align*}
f^{r}\left(P^{k}\right) & =\sum_{i_{1}+\cdots+i_{r}=k} f\left(P^{i_{1}}\right) \cdots f\left(P^{i_{r}}\right) \\
& =\sum_{i_{1}+\cdots+i_{r}=k, i_{j} \neq k} f\left(P^{i_{1}}\right) \cdots f\left(P^{i_{r}}\right)+r f\left(P^{k}\right) \\
& =\sum_{i_{1}+\cdots+i_{r}=k, i_{j} \neq k} f(P)^{i_{1}} \cdots f(P)^{i_{r}}+r f\left(P^{k}\right) \\
& =f(P)^{k} \sum_{i_{1}+\cdots+i_{r}=k, i_{j} \neq k} 1+r f\left(P^{k}\right) \\
& =f(P)^{k}\left[\binom{r+k-1}{k}-r\right]+r f\left(P^{k}\right) \\
& =f(P)^{k}\left(\mu_{-r}^{\Omega}\left(P^{k}\right)-r\right)+r f\left(P^{k}\right) \tag{22}
\end{align*}
$$

for all $r \in \mathbb{N}$.
Claim. 1

$$
\begin{equation*}
f^{\alpha}\left(P^{i}\right)=f(P)^{i} \mu_{-\alpha}^{\Omega}\left(P^{i}\right) \quad(i=1, \ldots, k-1) \tag{23}
\end{equation*}
$$

for all real numbers α.
Proof of Claim 1. For $\alpha \in \mathbb{R}$, we have that $f^{\alpha}\left(P^{i}\right)$ is a polynomial in α for all $i \in\{1, \ldots, k-1\}$, by Lemma 2. By (12) and (13), $\mu_{-\alpha}^{\Omega}\left(P^{i}\right)$ is also a polynomial in α for all $i \in\{1, \ldots, k-1\}$. Thus, both sides of (23) are polynomials in α. It follows from (21) that (23) is true for infinitely many values of α, so $f^{\alpha}\left(P^{i}\right)-f(P)^{i} \mu_{-\alpha}^{\Omega}\left(P^{i}\right)$ is the zero polynomial. Therefore, (23)
holds for all real numbers α.
Claim. 2

$$
f^{\alpha}\left(P^{k}\right)=f(P)^{k}\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right)+\alpha f\left(P^{k}\right)
$$

for all real numbers α.
Proof of Claim 2. This is proved in a manner similar to Claim 1 using (22).
Returning to (20) and using the induction hypothesis together with Claim 1 and Claim 2, we obtain

$$
\begin{aligned}
f g\left(P^{k}\right)= & f\left(P^{k}\right)\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)+f(P)^{k-1}\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k-1}\right) f(P) \mu_{-\alpha}^{\Omega}(P) \\
& +\cdots+f(P)\left(g * \mu_{\alpha}^{\Omega}\right)(P) f(P)^{k-1} \mu_{-\alpha}^{\Omega}\left(P^{k-1}\right)+f(P)^{k}\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right) \\
& +\alpha f\left(P^{k}\right) \\
= & f\left(P^{k}\right)\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right) \\
& +f(P)^{k}\left\{\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k-1}\right) \mu_{-\alpha}^{\Omega}(P)+\cdots+\left(g * \mu_{\alpha}^{\Omega}\right)(P) \mu_{-\alpha}^{\Omega}\left(P^{k-1}\right)+\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right\} \\
& +\alpha f\left(P^{k}\right) \\
= & f\left(P^{k}\right)\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)+f(P)^{k}\left\{\left(g * \mu_{\alpha}^{\Omega} * \mu_{-\alpha}^{\Omega}\right)\left(P^{k}\right)-\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)-\alpha\right\}+\alpha f\left(P^{k}\right) \\
= & f\left(P^{k}\right)\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)+f(P)^{k}\left\{g\left(P^{k}\right)-\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)-\alpha\right\}+\alpha f\left(P^{k}\right), \text { by }(14) .
\end{aligned}
$$

Thus,

$$
f\left(P^{k}\right)\left\{\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)+\alpha-g\left(P^{k}\right)\right\}=f(P)^{k}\left\{\left(g * \mu_{\alpha}^{\Omega}\right)\left(P^{k}\right)+\alpha-g\left(P^{k}\right)\right\}
$$

and the assertion follows from the assumption (17).

4 Completely multiplicative polynomialarithmetic functions and the $\alpha^{\text {th }}$ polynomialpower functions

In this section, we give a necessary and sufficient condition for the $\alpha^{t h}$ polynomialpower function to be completely multiplicative, which is our last main result (Theorem 7). To facilitate the proof, we first prove Lemma 3, Theorem 5 and Theorem 6.

Lemma 3. For an irreducible polynomial $P \in \Omega$, if $f\left(1_{\Omega}\right)=1$ and $f\left(P^{i}\right)=$ $f(P)^{i}$ for all $i \in\{2, \ldots, n\}$, then

$$
f^{-1}\left(P^{i}\right)=0
$$

for all $i \in\{2, \ldots, n\}$.

Proof. This is easily proved by induction on n.
In 1974, T. B. Carroll gave a characterization of completely multiplicative arithmetic functions in the classical case ([2]), which states that if f is an arithmetic function such that $f(1)>0$, then f is completely multiplicative if and only if

$$
\log f(n)= \begin{cases}(\log p) f(p)^{a} & \text { if } n=p^{a}, p \text { prime, } a \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where \log is the Rearick's logarithmic operator ([9],[10]). For the polynomial case, we prove such result using Lemma 3.

Theorem 5. Let $f \in \mathcal{P}(\Omega)$. Then f is completely multiplicative if and only if for all irreducible polynomials $P \in \Omega$ and all integers $k \geq 1$.

$$
\log _{\Omega} f(M)= \begin{cases}\frac{f(P)^{k}}{k} & \text { if } M=P^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. If f is completely multiplicative, then f is multiplicative and so by Theorem $1, \log f(M)=0$ whenever M is not a power of an irreducible polynomial. If $M=P^{k}$ for some irreducible polynomial P in Ω and $k \in \mathbb{N}$, then using Proposition 1, Proposition 2, $f^{-1}\left(1_{\Omega}\right)=1$ and $f^{-1}(P)=-f(P)$, we obtain

$$
\begin{aligned}
\log _{\Omega} f(M) & =\log _{\Omega} f\left(P^{k}\right) \\
& =\frac{1}{a\left(P^{k}\right)} \sum_{i=0}^{k} f\left(P^{i}\right) f^{-1}\left(P^{k-i}\right) a\left(P^{i}\right) \\
& =\frac{1}{a\left(P^{k}\right)}\left[f\left(P^{k}\right) f^{-1}\left(1_{\Omega}\right) a\left(P^{k}\right)+f\left(P^{k-1}\right) f^{-1}(P) a\left(P^{k-1}\right)\right] \\
& =\frac{1}{k a(P)}\left[k f\left(P^{k}\right) a(P)-(k-1) f(P)^{k-1} f(P) a(P)\right] \\
& =\frac{1}{k}\left[k f(P)^{k}-(k-1) f(P)^{k}\right] \\
& =\frac{f(P)^{k}}{k}
\end{aligned}
$$

Conversely, by Theorem 1, we have f is multiplicative and so $f\left(1_{\Omega}\right)=$ $f^{-1}\left(1_{\Omega}\right)=1$ and $f^{-1}(P)=-f(P)$ for all irreducible polynomials $P \in \Omega$. To show that f is completely multiplicative, it suffices to show

$$
f\left(P^{k}\right)=f(P)^{k}
$$

for all irreducible polynomials $P \in \Omega$ and all positive integers k. Let $P \in \Omega$ be an arbitrary irreducible polynomial. By assumption, we have

$$
\begin{aligned}
\frac{f(P)^{2}}{2} & =\log _{\Omega} f\left(P^{2}\right) \\
& =\frac{1}{a\left(P^{2}\right)}\left[f\left(1_{\Omega}\right) f^{-1}\left(P^{2}\right) a\left(1_{\Omega}\right)+f(P) f^{-1}(P) a(P)+f\left(P^{2}\right) f^{-1}\left(1_{\Omega}\right) a\left(P^{2}\right)\right] \\
& =\frac{1}{2 a(P)}\left[2 f\left(P^{2}\right) a(P)-f(P)^{2} a(P)\right] \\
& =f\left(P^{2}\right)-\frac{1}{2} f(P)^{2}
\end{aligned}
$$

It follows that

$$
f\left(P^{2}\right)=f(P)^{2}
$$

Let k be a positive integer greater than two. Assume that

$$
f\left(P^{i}\right)=f(P)^{i}
$$

for all $i \in\{1, \ldots, k-1\}$. By Lemma $3, f^{-1}\left(P^{i}\right)=0$ for all $i \in\{2, \ldots, k-1\}$. It follows from the assumption that

$$
\begin{aligned}
\frac{f(P)^{k}}{k} & =\log _{\Omega} f\left(P^{k}\right) \\
& =\frac{1}{a\left(P^{k}\right)} \sum_{i=0}^{k} f\left(P^{i}\right) f^{-1}\left(P^{k-i}\right) a\left(P^{i}\right) \\
& =\frac{1}{k a(P)}\left[f\left(1_{\Omega}\right) f^{-1}\left(P^{k}\right) a\left(1_{\Omega}\right)+f\left(P^{k-1}\right) f^{-1}(P) a\left(P^{k-1}\right)+f\left(P^{k}\right) f^{-1}\left(1_{\Omega}\right) a\left(P^{k}\right)\right] \\
& =\frac{1}{k a(P)}\left[-(k-1) f(P)^{k} a(P)+k f\left(P^{k}\right) a(P)\right] \\
& =\frac{1}{k}\left[(1-k) f(P)^{k}+k f\left(P^{k}\right)\right]
\end{aligned}
$$

which implies that $f\left(P^{k}\right)=f(P)^{k}$ for all irreducible polynomials $P \in \Omega$ and all positive integers k.

By the same proof as in [1], we have the following theorem.
Theorem 6. Let $f \in \mathcal{A}(\Omega)$ be multiplicative. Then f is completely multiplicative if and only if

$$
\begin{equation*}
f^{-1}\left(P^{a}\right)=0 \tag{24}
\end{equation*}
$$

for all irreducible polynomials $P \in \Omega$ and all integers $a \geq 2$.
Our last main result reads:

Theorem 7. Let $f \in \mathcal{P}(\Omega)$ be multiplicative and $\alpha \in \mathbb{R} \backslash\{0\}$. Then f^{α} is completely multiplicative if and only if

$$
\begin{equation*}
f\left(P^{k}\right)=\binom{-1 / \alpha}{k}(-\alpha)^{k} f(P)^{k} \tag{25}
\end{equation*}
$$

for all irreducible polynomials $P \in \Omega$ and all positive integers k.
Proof. Assume that f^{α} is completely multiplicative. By Theorem 2 (i) and (8), we have

$$
\mu_{-1 / \alpha}^{\Omega} f^{\alpha}=\left(f^{\alpha}\right)^{1 / \alpha}=f
$$

Let $P \in \Omega$ be any irreducible polynomial and $k \in \mathbb{N}$. Then

$$
f\left(P^{k}\right)=\mu_{-1 / \alpha}^{\Omega}\left(P^{k}\right) f^{\alpha}\left(P^{k}\right)=\binom{-1 / \alpha}{k}(-1)^{k} f^{\alpha}(P)^{k}
$$

By Theorem 5, we have

$$
\begin{aligned}
f^{\alpha}(P) & =\log _{\Omega} f^{\alpha}(P) \\
& =\log _{\Omega}\left(\operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right)\right)(P) \\
& =\left(\alpha \log _{\Omega} f\right)(P) \\
& =\frac{\alpha}{a(P)}\left[f\left(1_{\Omega}\right) f^{-1}(P) a\left(1_{\Omega}\right)+f(P) f^{-1}\left(1_{\Omega}\right) a(P)\right] \\
& =\alpha f(P)
\end{aligned}
$$

since $a\left(1_{\Omega}\right)=0$ and $f^{-1}\left(1_{\Omega}\right)=1$. Hence,

$$
f\left(P^{k}\right)=\binom{-1 / \alpha}{k}(-1)^{k}(\alpha f(P))^{k}=\binom{-1 / \alpha}{k}(-\alpha)^{k} f(P)^{k}
$$

To prove the converse, we assume (25) and prove that f^{α} is completely multiplicative. Since $f \in \mathcal{P}(\Omega)$ is multiplicative, $\log _{\Omega} f(M)=0$, whenever M is not a power of an irreducible polynomial, by Theorem 1. Using (11) and (6), we have $f^{\alpha} \in \mathcal{P}(\Omega)$ and

$$
\log _{\Omega} f^{\alpha}(M)=\alpha \log _{\Omega} f(M)=0
$$

whenever M is not a power of an irreducible polynomial. By Theorem 1 again, f^{α} is multiplicative. To prove that f^{α} is completely multiplicative, it suffices to prove, by Theorem 6, that

$$
f^{-\alpha}\left(P^{k}\right)=0
$$

for all irreducible polynomials $P \in \Omega$ and all integers $k \geq 2$.

Let $g=f^{-\alpha}$. Then

$$
\log _{\Omega} g=\log _{\Omega} f^{-\alpha}=\log \left(\operatorname{Exp}_{\Omega}\left(-\alpha \log _{\Omega} f\right)\right)=-\alpha \log _{\Omega} f
$$

We must show that $g\left(P^{k}\right)=0$ for all irreducible polynomials $P \in \Omega$ and all integers $k \geq 2$. Since

$$
\left(\log _{\Omega} f\right)(M)=\frac{1}{a(M)}\left(d f * f^{-1}\right)(M) \quad\left(f \in \mathcal{P}(\Omega), M \in \Omega \backslash\left\{1_{\Omega}\right\}\right)
$$

we have

$$
f * d g=-\alpha(g * d f)
$$

Hence,

$$
\begin{equation*}
\sum_{i=0}^{k} f\left(P^{i}\right) d g\left(P^{k-i}\right)=-\alpha \sum_{i=0}^{k} g\left(P^{i}\right) d f\left(P^{k-i}\right) \tag{26}
\end{equation*}
$$

for all irreducible polynomials $P \in \Omega$ and all positive integers k. Let P be an irreducible polynomial in Ω and $k \in \mathbb{N}$. Using (11) and taking $k=1$ in (26), we get

$$
g(P)=-\alpha f(P)
$$

Taking $k=2$ in (26) and using $g(P)=-\alpha f(P)$, we obtain

$$
\begin{aligned}
2 g\left(P^{2}\right) & =-\alpha\left[2 f\left(P^{2}\right)-(\alpha+1) f(P)^{2}\right] \\
& =-\alpha\left[2\binom{-1 / \alpha}{2}(-\alpha)^{2} f(P)^{2}-(\alpha+1) f(P)^{2}\right] \\
& =-\alpha\left[(\alpha+1) f(P)^{2}-(\alpha+1) f(P)^{2}\right] \\
& =0
\end{aligned}
$$

so $g\left(P^{2}\right)=0$. Consider $k \geq 3$ and assume that $g\left(P^{i}\right)=0$ for all $i \in$ $\{2,, \ldots, k-1\}$. Returning to (26), we get that

$$
k g\left(P^{k}\right)=-k \alpha f\left(P^{k}\right)+\left[(k-1) \alpha^{2}+\alpha\right] f\left(P^{k-1}\right) f(P)
$$

It follows from (25) that
$k g\left(P^{k}\right)=-k \alpha\binom{-1 / \alpha}{k}(-\alpha)^{k} f(P)^{k}+\left[(k-1) \alpha^{2}+\alpha\right]\binom{-1 / \alpha}{k-1}(-\alpha)^{k-1} f(P)^{k-1} f(P)=0$,
so $g\left(P^{k}\right)=0$ for all irreducible polynomials $P \in \Omega$ and all integers $k \geq 2$.

References

[1] T. M. Apostol, Some properties of completely multiplicative arithmetical functions, Amer. Math. Monthly, 78 (1971), 266-271.
[2] T. B. Carroll, A characterization of completely multiplicative arithmetic functions, Amer. Math. Monthly, 81 (1974), 993-995.
[3] P. Haukkanen, On the real powers of completely multiplicative arithmetical functions, Nieuw Archief voor Wiskunde., 15 (1997), no. 1-2, 73-77.
[4] N. R. Kanasri, Characterizing completely multiplicative polynomials-arithmetic functions by generalized Möbius functions, Chamchuri Journal of Mathematics, 2 (2010), no. 2, 35-43.
[5] K. Khirathan and N. R. Kanasri, Characterizing completely multiplicative arithmetic functions of polynomials by Rearick Logarithmic Operator, Collections of the Full Papers of the 15th Annual Meeting in Mathematics, 2010, 165-174.
[6] J. Lambek, Arithmetic functions and distributivity, Amer. Math. Monthly, 73 (1966), 969-973.
[7] E. Langford, Distributivity over the Dirichlet product and completely multiplicative arithmetical functions, Amer. Math. Monthly, 80 (1973), 411-414.
[8] V. Laohakosol and N. Pabhapote, Completely multiplicative functions arising from simple operations, Int. J. Math. Math. Sci., 9 (2004), 431-441.
[9] D. Rearick, Operators on algebras of arithmetic functions, Duke Math. J., 35 (1968),761-766.
[10] D. Rearick, The trigonometry of numbers, Duke Math. J., 35 (1968),767-776.
[11] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002.
[12] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Monographs and Textbooks in Pure and Applied Mathematics, vol. 126, Marcel Dekker, New York, 1989.

[^0]: Keywords: polynomial-arithmetic function, complete multiplicativity, distributive property, $\alpha^{t h}$ polynomial-power function
 (2010) AMS Classification: 11A25

 Supported by the Commission on Higher Education, the Thailand Research Fund, and the Centre of Excellence in Mathematics, Thailand.

