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Abstract

Let A(Ω) denote the ring of arithmetic functions f : Ω → C, where Ω
is the set of monic polynomials over a finite field. Some characterizations
of completely multiplicative arithmetic functions in A(Ω), using distribu-
tive property, are established. A necessary and sufficient condition for
the αth power function in A(Ω) to be completely multiplicative is given
for all nonzero real numbers α.

1 Introduction and preliminaries

Let Fpn [x] be the set of all polynomials over a finite field Fpn where p is a prime
and n is a positive integer. For M, N ∈ Fpn [x], we define a relation on Fpn [x]
by

M ∼ N if and only if M = aN for some a ∈ Fpn\{0}.
It is easily checked that this is an equivalence relation. Let Ω denote the set of
all equivalence classes of nonzero polynomials in Fpn [x]. For convenience, we
regard Ω as the set of monic polynomials over a finite field Fpn , with implicit
understanding that these polynomials represent equivalence classes. Hence, a
polynomial in Ω merely refers to a monic polynomial. It is well-known ([11])
that, each nonconstant polynomial M ∈ Ω can be uniquely written in the form

M = P a1
1 P a2

2 · · ·P ak

k ,

where P1, P2, . . . , Pk are irreducible polynomials in Ω and a1, a2, . . . , ak, k ∈ N.
By a polynomial-arithmetic function, ([12]), we mean a mapping f from

the set Ω into the field of complex numbers C. Let (A (Ω) , +, ∗) denote the
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set of polynomial-arithmetic functions equipped with addition and Dirichlet
convolution defined over Ω, respectively, by

(f + g) (M) = f (M) + g (M)

(f ∗ g) (M) =
∑
D|M

(Ω)
f (D) g

(
M

D

)

for all M ∈ Ω, where the summation is over all D ∈ Ω which are divisors of
M . Throughout, the notation

∑(Ω) signifies a summation taken over monic
polynomials in Ω. As in the case of classical arithmetic functions, we know
that (A (Ω) , +, ∗) is an integral domain with identity IΩ ([12]), defined by

IΩ (M) =

{
1 if M = 1Ω

0 otherwise,

where 1Ω is the identity element in Fpn .
We have shown in [5], that the set

U (Ω) := {f ∈ A (Ω) : f (1Ω) �= 0}
is the group of units in A (Ω). That is, for every f ∈ U(Ω), there is f−1 ∈ A(Ω),
the inverse of f with respect to the Dirichlet convolution, such that f∗f−1 = IΩ.

A function f ∈ A(Ω) is said to be multiplicative if f �= 0 and

f (MN) = f (M) f (N) (1)

whenever g.c.d. (M, N) = 1Ω and f is said to be completely multiplicative if (1)
holds for all pairs of polynomials M, N ∈ Ω ([12]). We have seen in [12] that
the set of multiplicative functions is a subgroup of the group of units U (Ω).
Hence if f is multiplicative, then so is f−1. A polynomial-arithmetic function
a ∈ A (Ω) is said to be completely additive if

a (MN) = a (M) + a (N)

for all M, N ∈ Ω ([5]). Note that

• if f(1Ω) �= 0, then f−1(1Ω) = 1 and f−1(P ) = −f(P ) for all irreducible
polynomial P in Ω;

• if f is multiplicative, then f (1Ω) = 1;

• if a ∈ A (Ω) is completely additive, then a (1Ω) = 0.

Next, we recall the definitions of the polynomial-logarithmic operator in [5],
the polynomial-exponential operator, the polynomial-power function and the
generalized polynomial-Möbius function in [4].
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For notational convenience, let

A1 (Ω) = {f ∈ A (Ω) : f (1Ω) ∈ R} and P (Ω) = {f ∈ A (Ω) : f (1Ω) > 0} ⊆ U (Ω) .

It is not difficult to show that (A1 (Ω) , +) and (P (Ω) , ∗) are groups.

Definition 1. ([5]) Let a ∈ A (Ω) be a completely additive polynomial-arithmetic
function for which a (M) �= 0 for all M ∈ Ω\ {1Ω}. The polynomial-logarithmic
operator (associated with a) is the map LogΩ : P (Ω) → A1 (Ω), defined by

LogΩf (1Ω) = logf (1Ω) ,

LogΩf (M) =
1

a (M)

∑
D|M

(Ω)
f (D) f−1

(
M

D

)
a (D) (2)

=
1

a (M)
(
df ∗ f−1

)
(M) (3)

for all M ∈ Ω\ {1Ω} where the right-hand side of the first equation denotes the
real logarithmic value and df(M) = f(M)a(M) for all M ∈ Ω.

We have shown in [5] that LogΩ is a group isomorphism from (P(Ω), ∗) onto
(A1 (Ω) , +) , and hence

LogΩ (f ∗ g) = LogΩ f + LogΩ g (f, g ∈ P(Ω)). (4)

Definition 2. ([4]) The polynomial-exponential operator is the map

ExpΩ : A1 (Ω) → P (Ω) ,

defined by ExpΩ = (LogΩ)−1.

Note that

ExpΩ(f + g) = ExpΩ(f) ∗ ExpΩ(g) (f, g ∈ A1(Ω)). (5)

Definition 3. ([4]) For f ∈ P (Ω) and α ∈ R, the αth polynomial-power
function is defined as

fα = ExpΩ(αLogΩ f) ∈ P(Ω). (6)

Clearly, f0 = IΩ and f1 = f . For r ∈ N, using (5) and (6), we obtain

fr = ExpΩ(rLogΩ f)
= ExpΩ(LogΩ f + · · ·+ LogΩf)
= ExpΩ(LogΩ f) ∗ · · · ∗ ExpΩ(LogΩ f)
= f ∗ · · · ∗ f (r factors).
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We can show similarly that

f−r = f−1 ∗ f−1 ∗ · · · ∗ f−1 (r factors),

where f−1 is the inverse of f with respect to the Dirichlet convolution. It is
easily checked that

fα+β = fα ∗ fβ (7)

(fα)β = fαβ (8)

and
(fα)−1 = f−α (9)

for all f ∈ P(Ω) and α, β ∈ R.
We have shown in [4] that for f ∈ A1(Ω), ExpΩf is uniquely determined

by the formulas

ExpΩf (1Ω) = exp(f (1Ω)),

ExpΩf (M) =
1

a (M)

∑
D|M

(Ω)
ExpΩ f (D) f

(
M

D

)
a

(
M

D

)
(10)

for all M ∈ Ω\ {1Ω}, where a is a completely additive polynomial-arithmetic
function for which a(M) �= 0 for all M ∈ Ω\{1Ω}. Observe that if f(1Ω) = 1,
then

fα(1Ω) = ExpΩ(αLogΩ f)(1Ω) = exp ((αLogΩf)(1Ω)) = exp (α log f(1Ω)) = 1.
(11)

for all α ∈ R.

Definition 4. ([4]) For α ∈ R, the generalized polynomial-Möbius function
μΩ

α : Ω → C is defined by

μΩ
α(M) =

k∏
i=1

(
α

ai

)
(−1)ai , μΩ

α(1Ω) = 1, (12)

where M = P a1
1 P a2

2 · · ·P ak

k , P1, P2, . . . , Pk are irreducible polynomials in Ω,
a1, a2, . . . , ak, k ∈ N and(

α

0

)
= 1,

(
α

n

)
=

α(α− 1) · · · (α − n + 1)
n!

(n ∈ N). (13)

Observe that μΩ
0 = IΩ, μΩ

−1 = u, where u(M) = 1 for all M ∈ Ω, and μΩ
1 = μΩ,

the polynomial-Möbius function ([12]) defined by

μΩ (M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if M = 1Ω,

0 if P 2|M, P irreducible polynomial in Ω,

(−1)k if M = P1P2 · · ·Pk, a product of distinct irreducible
polynomials in Ω.
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Clearly, μΩ
α is multiplicative for all real numbers α. It is easy to show that

μΩ
α ∗ μΩ

β = μΩ
α+β (14)

for all real numbers α, β. Note that

μΩ ∗ u = IΩ and μΩ
−α =

(
μΩ

α

)−1

for all real numbers α.
In the classical case, the distributive property of completely multiplicative

functions discovered by J. Lambek ([6]), asserts that an arithmetic function
f is completely multiplicative if and only if it distributes over every Dirichlet
product. It is shown in [4] that such Lambek’s result holds in the polynomial
case. Afterward, E. Langford points out in [7] an interesting characterization
of completely multiplicative functions f using partially discriminative prod-
ucts, which states that given a multiplicative function f , then f is completely
multiplicative if and only if it distributes over some partially discriminative
products. In 2004, V. Laohakosol and N. Pabhapote ([8]) gave a necessary and
sufficient condition for the αth power function fα to be completely multiplica-
tive. It states that given a multiplicative function f and α ∈ R\{0}, then fα

is completely multiplicative if and only if f(pk) =
(−1/α

k

)
(−α)kf(p)k for all

primes p and all k ∈ N.
The first objective of this paper is to establish some characterizations of

completely multiplicative polynomial-arithmetic functions through their dis-
tributive property using polynomial-partially discriminative products and gen-
eralized polynomial-Möbius function. The second objective is to give a nec-
essary and sufficient condition for the αth polynomial-power function to be
completely multiplicative for all nonzero real numbers α.

2 Basic results

To facilitate the proof of our main results, we recall the following results in [5]
and [4].

Proposition 1. ([5]) If f ∈ A (Ω) is multiplicative, then f is completely mul-
tiplicative if and only if f

(
P k
)

= f (P )k for all irreducible polynomials P ∈ Ω
and for all k ∈ N.

Proposition 2. ([5]) Let f ∈ A (Ω) be multiplicative. Then f is completely
multiplicative if and only if f−1 = fμΩ.

Theorem 1. ([5]) Let f ∈ P (Ω). Then f is multiplicative if and only if
Logf(M) = 0 whenever M is not a power of an irreducible polynomial.
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Lemma 1. ([4]) A multiplicative function f ∈ A (Ω) is completely multiplica-
tive if and only if

f(g ∗ h) = fg ∗ fh

for all g, h ∈ A(Ω).

Theorem 2. ([4]) Let f ∈ P (Ω) be multiplicative and α ∈ R. We have

(i) if f is completely multiplicative then fα = μΩ−αf;

(ii) for α /∈ {0, 1}, if fα = μΩ−αf, then f is completely multiplicative.

3 Completely multiplicative polynomial-arithmetic

functions

In this section, we first define the definition of partially discriminative products
for polynomial-arithmetic functions similar to the classical cases, defined by E.
Langford ([7]).

Definition 5. For polynomial-arithmetic functions g and h, a Dirichlet prod-
uct g ∗ h is called polynomial-partially discriminative if for every irreducible
polynomial P ∈ Ω and k ∈ N,

(g ∗ h)
(
P k
)

= g(1Ω)h
(
P k
)

+ g
(
P k
)
h (1Ω) ,

then k = 1.

Note that μΩ ∗ u is a polynomial-partially discriminative product.
Using Proposition 1, Lemma 1 and the same proof as in [7], we have the

following theorem.

Theorem 3. Suppose that f ∈ A (Ω) is multiplicative. Then f is completely
multiplicative if and only if f distributes over some polynomial-partially dis-
criminative product g ∗ h.

The following two corollaries are immediate consequences of Proposition 2
and Theorem 3, respectively.

Corollary 1. For any multiplicative function f ∈ A (Ω), f is completely mul-
tiplicative if and only if f distributes over μΩ ∗ u (= IΩ).
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Proof. Let f ∈ A (Ω) be a multiplicative function. Then f(1Ω) = 1 and using
Proposition 2, we obtain

f distributes over μΩ ∗ u ⇔ f(μΩ ∗ u) = fμΩ ∗ fu

⇔ fIΩ = fμΩ ∗ fu

⇔ IΩ = fμΩ ∗ f

⇔ f−1 = fμΩ

⇔ f is completey multiplicative.

�

Corollary 2. Let f be a multiplicative polynomial-arithmetic function, g be a
polynomial-arithmetic function with g (1Ω) = 1 and α ∈ R \ {0}.

A. If f is completely multiplicative, then

f
(
g ∗ μΩ

α

)
= fg ∗ fμΩ

α = fg ∗ f−α.

B. Assume that (
g ∗ μΩ

α

) (
P k
)− μΩ

α

(
P k
)− g

(
P k
) �= 0 (15)

for all integers k ≥ 2 and for all irreducible polynomials P in Ω. If

f
(
g ∗ μΩ

α

)
= fg ∗ fμΩ

α ,

then f is completely multiplicative.

Proof. A. Assume that f is completely multiplicative. By Lemma 1 and The-
orem 2(i) , we have

f
(
g ∗ μΩ

α

)
= fg ∗ fμΩ

α = fg ∗ f−α.

B. Since g(1Ω) = 1, then the condition (15) implies that the Dirichlet prod-
uct g ∗ μΩ

α is a polynomial-partially discriminative. Hence part B. follows from
Theorem 3. �

In the proof of the theorem in [3], P. Haukkanen proved that if f is an
arithmetic function with f(1) > 0 and n is a positive integer, then fα(n) is
a polynomial in α. Now for the next main result, we prove this fact for the
polynomial case as follows:

Lemma 2. For α ∈ R, if f is a multiplicative function in A(Ω), then fα(M)
is a polynomial in α for fixed M ∈ Ω.

Proof. Assume that f ∈ A(Ω) is a multiplicative function. Then f(1Ω) = 1.
Let M ∈ Ω be fixed. We will prove that fα(M) is a polynomial in α by
induction on deg(M). If deg(M) = 0, then M = 1Ω and so fα(1Ω) = 1 is a
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constant polynomial. Assume that fα(D) is a polynomial in α for all D ∈ Ω
such that deg(D) < deg(M). Now

fα = ExpΩ(αLogΩ f), (16)

where ExpΩ is the polynomial-exponential operator and LogΩ is the polynomial-
logarithmic operator (associated with a completely additive polynomial-arithmetic
function a). Using (16), (10) and a(1Ω) = 0, we obtain

fα(M) = ExpΩ(αLogΩ f)(M)

=
1

a (M)

∑
D|M

(Ω)
ExpΩ (αLogΩ f) (D) (αLogΩ f)

(
M

D

)
a

(
M

D

)

=
1

a (M)

∑
D|M

(Ω)
fα (D) (αLogΩ f)

(
M

D

)
a

(
M

D

)

=
1

a (M)

∑
D|M,D �=M

(Ω)
fα (D) (αLogΩ f)

(
M

D

)
a

(
M

D

)
,

and the desired result follows from the induction hypothesis. �
The following Theorem is our second main result.

Theorem 4. Let f ∈ A(Ω) be a multiplicative function, g a polynomial-
arithmetic function with g(1Ω) = 1 and α ∈ R \ {0}. Assume that(

g ∗ μΩ
α

) (
P k
)− g

(
P k
)

+ α �= 0 (17)

for all integers k ≥ 2 and for all irreducible polynomials P in Ω. If

f
(
g ∗ μΩ

α

)
= fg ∗ f−α, (18)

then f is completely multiplicative.

Proof. Since f ∈ A(Ω) is a multiplicative function, we have f(1Ω) = 1. To
show that f is completely multiplicative, it suffices to show that

f
(
P k
)

= f(P )k (19)

for all irreducible polynomials P ∈ Ω and for all k ∈ N. By Proposition 1, we
prove (19) by induction on k. It is clear for k = 1, so assume that k ≥ 2 and
f
(
P i
)

= f (P )i for all i ∈ {1, . . . , k − 1}. Using (7) and f0 = IΩ, rewrite (18)
in an equivalent form as

f(g ∗ μΩ
α) ∗ fα = fg.

Since f(1Ω) = g(1Ω) = μΩ
α(1Ω) = fα(1Ω) = 1, we get

fg(P k) =f(g ∗ μΩ
α)(P k) + f(g ∗ μΩ

α)(P k−1)fα(P )

+ · · ·+ f(g ∗ μΩ
α)(P )fα(P k−1) + fα(P k). (20)
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We pause to note two important facts.
Fact 1. If f(P i) = f(P )i for 1 ≤ i ≤ j, then

fr(P j) =
∑

i1+···+ir=j

f(P i1 ) · · ·f(P ir ) = f(P )j

(
r + j − 1

j

)

for all r ∈ N.
Fact 2. For j ∈ N, we have

μΩ
−α(P j) =

(−α

j

)
(−1)j =

(
α + j − 1

j

)

for all α ∈ R.
Using induction hypothesis, Fact 1 and Fact 2, we get that

fr(P i) = f(P )i

(
r + i − 1

i

)
= f(P )iμΩ

−r

(
P i
)

(i = 1, . . . , k − 1) (21)

for all r ∈ N. It follows by induction hypothesis and Fact 2 that

fr(P k) =
∑

i1+···+ir=k

f(P i1 ) · · ·f(P ir ),

=
∑

i1+···+ir=k,ij �=k

f(P i1 ) · · ·f(P ir ) + rf(P k),

=
∑

i1+···+ir=k,ij �=k

f(P )i1 · · ·f(P )ir + rf(P k),

= f(P )k
∑

i1+···+ir=k,ij �=k

1 + rf(P k),

= f(P )k

[(
r + k − 1

k

)
− r

]
+ rf(P k)

= f(P )k
(
μΩ
−r(P

k) − r
)

+ rf(P k) (22)

for all r ∈ N.
Claim. 1

fα(P i) = f(P )iμΩ
−α

(
P i
)

(i = 1, . . . , k − 1) (23)

for all real numbers α.
Proof of Claim 1. For α ∈ R, we have that fα(P i) is a polynomial in α
for all i ∈ {1, . . . , k − 1}, by Lemma 2. By (12) and (13), μΩ−α

(
P i
)

is also
a polynomial in α for all i ∈ {1, . . . , k − 1}. Thus, both sides of (23) are
polynomials in α. It follows from (21) that (23) is true for infinitely many
values of α, so fα(P i)−f(P )iμΩ

−α

(
P i
)

is the zero polynomial. Therefore, (23)
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holds for all real numbers α.
Claim. 2

fα(P k) = f(P )k
(
μΩ
−α(P k) − α

)
+ αf(P k)

for all real numbers α.
Proof of Claim 2. This is proved in a manner similar to Claim 1 using (22).

Returning to (20) and using the induction hypothesis together with Claim
1 and Claim 2, we obtain

fg(P k) =f(P k)(g ∗ μΩ
α)(P k) + f(P )k−1(g ∗ μΩ

α)(P k−1)f(P )μΩ
−α(P )

+ · · · + f(P )(g ∗ μΩ
α)(P )f(P )k−1μΩ

−α(P k−1) + f(P )k
(
μΩ
−α(P k) − α

)
+ αf(P k)

=f(P k)(g ∗ μΩ
α)(P k)

+ f(P )k
{
(g ∗ μΩ

α)(P k−1)μΩ
−α(P ) + · · · + (g ∗ μΩ

α)(P )μΩ
−α(P k−1) + μΩ

−α(P k) − α
}

+ αf(P k)

=f(P k)(g ∗ μΩ
α)(P k) + f(P )k

{(
g ∗ μΩ

α ∗ μΩ
−α

)
(P k) −

(
g ∗ μΩ

α

)
(P k) − α

}
+ αf(P k)

=f(P k)(g ∗ μΩ
α)(P k) + f(P )k

{
g(P k) −

(
g ∗ μΩ

α

)
(P k) − α

}
+ αf(P k), by (14).

Thus,

f(P k)
{
(g ∗ μΩ

α)(P k) + α − g(P k)
}

= f(P )k
{
(g ∗ μΩ

α)(P k) + α − g(P k)
}

,

and the assertion follows from the assumption (17). �

4 Completely multiplicative polynomial-

arithmetic functions and the αth polynomial-
power functions

In this section, we give a necessary and sufficient condition for the αth polynomial-
power function to be completely multiplicative, which is our last main result
(Theorem 7). To facilitate the proof, we first prove Lemma 3, Theorem 5 and
Theorem 6.

Lemma 3. For an irreducible polynomial P ∈ Ω, if f(1Ω) = 1 and f(P i) =
f(P )i for all i ∈ {2, . . . , n}, then

f−1(P i) = 0

for all i ∈ {2, . . . , n}.
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Proof. This is easily proved by induction on n.
�

In 1974, T. B. Carroll gave a characterization of completely multiplicative
arithmetic functions in the classical case ([2]), which states that if f is an
arithmetic function such that f(1) > 0, then f is completely multiplicative if
and only if

Logf(n) =

{
(log p)f(p)a if n = pa, p prime, a ≥ 1,

0 otherwise,

where Log is the Rearick’s logarithmic operator ([9],[10]). For the polynomial
case, we prove such result using Lemma 3.

Theorem 5. Let f ∈ P (Ω). Then f is completely multiplicative if and only if
for all irreducible polynomials P ∈ Ω and all integers k ≥ 1.

LogΩf(M) =

{
f(P)k

k
if M = P k,

0 otherwise.

Proof. If f is completely multiplicative, then f is multiplicative and so by Theo-
rem 1, Logf(M) = 0 whenever M is not a power of an irreducible polynomial.
If M = P k for some irreducible polynomial P in Ω and k ∈ N, then using
Proposition 1, Proposition 2, f−1(1Ω) = 1 and f−1(P ) = −f(P ), we obtain

LogΩf(M) = LogΩf(P k)

=
1

a(P k)

k∑
i=0

f(P i)f−1(P k−i)a(P i)

=
1

a(P k)
[
f(P k)f−1(1Ω)a(P k) + f(P k−1)f−1(P )a(P k−1)

]
=

1
ka(P )

[
kf(P k)a(P ) − (k − 1)f(P )k−1f(P )a(P )

]
=

1
k

[
kf(P )k − (k − 1)f(P )k

]
=

f(P )k

k
.

Conversely, by Theorem 1, we have f is multiplicative and so f(1Ω) =
f−1(1Ω) = 1 and f−1(P ) = −f(P ) for all irreducible polynomials P ∈ Ω. To
show that f is completely multiplicative, it suffices to show

f(P k) = f(P )k
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for all irreducible polynomials P ∈ Ω and all positive integers k. Let P ∈ Ω be
an arbitrary irreducible polynomial. By assumption, we have

f(P )2

2
= LogΩf(P 2)

=
1

a(P 2)
[
f(1Ω)f−1(P 2)a(1Ω) + f(P )f−1(P )a(P ) + f(P 2)f−1(1Ω)a(P 2)

]
=

1
2a(P )

[
2f(P 2)a(P ) − f(P )2a(P )

]
= f(P 2) − 1

2
f(P )2 .

It follows that
f(P 2) = f(P )2.

Let k be a positive integer greater than two. Assume that

f(P i) = f(P )i

for all i ∈ {1, . . . , k − 1}. By Lemma 3, f−1(P i) = 0 for all i ∈ {2, . . . , k − 1}.
It follows from the assumption that

f(P )k

k
= LogΩf(P k)

=
1

a(P k)

k∑
i=0

f(P i)f−1(P k−i)a(P i)

=
1

ka(P )

[
f(1Ω)f−1(P k)a(1Ω) + f(P k−1)f−1(P )a(P k−1) + f(P k)f−1(1Ω)a(P k)

]

=
1

ka(P )

[
−(k − 1)f(P )ka(P ) + kf(P k)a(P )

]

=
1

k

[
(1− k)f(P )k + kf(P k)

]
,

which implies that f(P k) = f(P )k for all irreducible polynomials P ∈ Ω and
all positive integers k. �

By the same proof as in [1], we have the following theorem.

Theorem 6. Let f ∈ A (Ω) be multiplicative. Then f is completely multiplica-
tive if and only if

f−1(P a) = 0 (24)

for all irreducible polynomials P ∈ Ω and all integers a ≥ 2.

Our last main result reads:
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Theorem 7. Let f ∈ P (Ω) be multiplicative and α ∈ R\{0}. Then fα is
completely multiplicative if and only if

f(P k) =
(−1/α

k

)
(−α)kf(P )k (25)

for all irreducible polynomials P ∈ Ω and all positive integers k.

Proof. Assume that fα is completely multiplicative. By Theorem 2 (i) and (8),
we have

μΩ
−1/αfα = (fα)1/α = f.

Let P ∈ Ω be any irreducible polynomial and k ∈ N. Then

f(P k) = μΩ
−1/α(P k)fα(P k) =

(−1/α

k

)
(−1)kfα(P )k.

By Theorem 5, we have

fα(P ) = LogΩfα(P )
= LogΩ (ExpΩ(αLogΩf)) (P )
= (αLogΩf)(P )

=
α

a(P )
[
f(1Ω)f−1(P )a(1Ω) + f(P )f−1(1Ω)a(P )

]
= αf(P ),

since a(1Ω) = 0 and f−1(1Ω) = 1. Hence,

f(P k) =
(−1/α

k

)
(−1)k (αf(P ))k =

(−1/α

k

)
(−α)kf(P )k.

To prove the converse, we assume (25) and prove that fα is completely
multiplicative. Since f ∈ P(Ω) is multiplicative, LogΩf(M) = 0, whenever M
is not a power of an irreducible polynomial, by Theorem 1. Using (11) and (6),
we have fα ∈ P(Ω) and

LogΩfα(M) = αLogΩf(M) = 0,

whenever M is not a power of an irreducible polynomial. By Theorem 1 again,
fα is multiplicative. To prove that fα is completely multiplicative, it suffices
to prove, by Theorem 6, that

f−α(P k) = 0

for all irreducible polynomials P ∈ Ω and all integers k ≥ 2.
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Let g = f−α. Then

LogΩg = LogΩf−α = Log (ExpΩ (−αLogΩf)) = −αLogΩf.

We must show that g(P k) = 0 for all irreducible polynomials P ∈ Ω and all
integers k ≥ 2. Since

(LogΩf)(M) =
1

a(M)
(df ∗ f−1)(M) (f ∈ P (Ω) , M ∈ Ω\{1Ω}),

we have

f ∗ dg = −α(g ∗ df).

Hence,
k∑

i=0

f(P i)dg(P k−i) = −α

k∑
i=0

g(P i)df(P k−i) (26)

for all irreducible polynomials P ∈ Ω and all positive integers k. Let P be an
irreducible polynomial in Ω and k ∈ N. Using (11) and taking k = 1 in (26),
we get

g(P ) = −αf(P ).

Taking k = 2 in (26) and using g(P ) = −αf(P ), we obtain

2g(P 2) = −α
[
2f(P 2) − (α + 1)f(P )2

]
= −α

[
2
(−1/α

2

)
(−α)2f(P )2 − (α + 1)f(P )2

]
= −α

[
(α + 1)f(P )2 − (α + 1)f(P )2

]
= 0,

so g(P 2) = 0. Consider k ≥ 3 and assume that g(P i) = 0 for all i ∈
{2, , . . . , k − 1}. Returning to (26), we get that

kg(P k) = −kαf(P k) +
[
(k − 1)α2 + α

]
f(P k−1)f(P ).

It follows from (25) that

kg(P k) = −kα

(
−1/α

k

)
(−α)kf(P )k+

[
(k − 1)α2 + α

](−1/α

k − 1

)
(−α)k−1f(P )k−1f(P ) = 0,

so g(P k) = 0 for all irreducible polynomials P ∈ Ω and all integers k ≥ 2. �
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