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Abstract

Let A(Q) denote the ring of arithmetic functions f : Q@ — C, where Q
is the set of monic polynomials over a finite field. Some characterizations
of completely multiplicative arithmetic functions in .4(€2), using distribu-
tive property, are established. A necessary and sufficient condition for
the o' power function in A(Q) to be completely multiplicative is given
for all nonzero real numbers a.

1 Introduction and preliminaries

Let Fn [x] be the set of all polynomials over a finite field Fp» where p is a prime
and n is a positive integer. For M, N € Fpn[z], we define a relation on Fyn [x]
by

M ~ N if and only if M =aN for some a € F,»\{0}.

It is easily checked that this is an equivalence relation. Let {2 denote the set of
all equivalence classes of nonzero polynomials in Fyn[z]. For convenience, we
regard ) as the set of monic polynomials over a finite field Fy,», with implicit
understanding that these polynomials represent equivalence classes. Hence, a
polynomial in © merely refers to a monic polynomial. It is well-known ([11])
that, each nonconstant polynomial M € £ can be uniquely written in the form

M = P& Pg2 ... pox,

where Py, Ps, ..., Py are irreducible polynomials in €2 and a4, as, ..., ax, k € N.
By a polynomial-arithmetic function, ([12]), we mean a mapping f from
the set Q into the field of complex numbers C. Let (A (), 4+, *) denote the
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set of polynomial-arithmetic functions equipped with addition and Dirichlet
convolution defined over €2, respectively, by

(f +9) (M) = f (M) + g (M)
o on =3 019 ()
D|M

for all M € (), where the summation is over all D € Q which are divisors of
M. Throughout, the notation Z(Q) signifies a summation taken over monic
polynomials in . As in the case of classical arithmetic functions, we know
that (A (), +, %) is an integral domain with identity I ([12]), defined by

1 if M=1q
0 otherwise,

IQ(M):{

where 1q is the identity element in Fpn.
We have shown in [5], that the set

U :={feAQ): f(la) # 0}

is the group of units in A (2). That is, for every f € U(Q), thereis f~! € A(Q),
the inverse of f with respect to the Dirichlet convolution, such that f*f~1 = Iq.
A function f € A(Q) is said to be multiplicative if f # 0 and

f(MN) = f(M)f(N) (1)

whenever g.c.d. (M, N) = 1 and f is said to be completely multiplicative if (1)
holds for all pairs of polynomials M, N €  ([12]). We have seen in [12] that
the set of multiplicative functions is a subgroup of the group of units U (Q).
Hence if f is multiplicative, then so is f~!'. A polynomial-arithmetic function
a € A(Q) is said to be completely additive if

a(MN)=a(M)+a(N)
for all M, N € Q ([5]). Note that

o if f(lg) #0, then f~1(1g) =1 and f~1(P) = —f(P) for all irreducible
polynomial P in €;

e if f is multiplicative, then f (1g) = 1;
o ifa e A(Q) is completely additive, then a (1g) = 0.

Next, we recall the definitions of the polynomial-logarithmic operator in [5],
the polynomial-exponential operator, the polynomial-power function and the
generalized polynomial-M&bius function in [4].
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For notational convenience, let
A Q) ={feAQ):f(lg) eR} and P(Q) ={f€ A(Q): f(1la) >0} CU(N).
It is not difficult to show that (A; (), +) and (P (), *) are groups.

Definition 1. (/5/) Leta € A () be a completely additive polynomial-arithmetic
function for which a (M) # 0 for all M € Q\ {1q}. The polynomial-logarithmic
operator (associated with a) is the map Logq : P (Q) — A; (Q), defined by

Logaf (1a) = logf (1a),

Loga () = 55 3= 1 ) 57 (5 ) a(D) )
D|M
1 1
= o000 (df * f~1) (M) (3)

for all M € Q\ {1q} where the right-hand side of the first equation denotes the
real logarithmic value and df (M) = f(M)a(M) for all M € Q.

We have shown in [5] that Loggq is a group isomorphism from (P(£2), %) onto
(A1 (2),+4), and hence

Loga (f * g) = Loga f + Loga g (f,9 € P(Q)). (4)
Definition 2. ([4]) The polynomial-exponential operator is the map
Expq : A1 (2) = P (Q),
defined by Expg = (Loga)~*.
Note that
Ezpa(f + 9) = Expa(f) * Ezpa(g)  (f,9 € Ai(Q)). ()

Definition 3. ([4/) For f € P(Q) and a € R, the o' polynomial-power
function is defined as
f¢ = Expa(aLogq f) € P(Q). (6)
Clearly, fO = Iq and f! = f. For r € N, using (5) and (6), we obtain
/"= Expa(rLogqa f)
= Expo(Logq f+ -+ Logaf)

= Expa(Logq f) * -+ * Expa(Loga f)
= fx---x f (r factors).
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We can show similarly that
FTr=ftxftxoxft (rfactors),

where f~! is the inverse of f with respect to the Dirichlet convolution. It is
easily checked that

Foro = o fP (7)
(f*) =58 (8)

and
(f)y t=f 9)

for all f € P(Q2) and a, 8 € R.
We have shown in [4] that for f € A;1(2), Expqf is uniquely determined
by the formulas

Ezpaf (1a) = exp(f (1a)),

Bapaf M) = 55 X B 011 () o () 00)

( DM

for all M € Q\ {1q}, where a is a completely additive polynomial-arithmetic
function for which a(M) # 0 for all M € Q\{1q}. Observe that if f(1q) =1,
then

f*(la) = Ezpa(aLoga f)(1a) = exp ((aLogaf)(1a)) = exp (alog f(1a)) T i)
1

for all « € R.

Definition 4. ([4]) For a € R, the generalized polynomial-Mdbius function
ps . Q — C is defined by

uon =L (£ ) v w2 =1 12)

a;
1=1 v

where M = P Py*..- P Py, P, ..., Py are irreducible polynomials in 2,
ai,asz,...,ar, k€N and

(a>:1, (a>:a(a_1>---(a_n+1> o~ )

0 n n!

Observe that uf} = In, pf, = u, where u(M) = 1 for all M € Q, and u$¥ = u*,
the polynomial-Mobius function ([12]) defined by

1 if M = 1q,

0 if P?2|M, P irreducible polynomial in €,

(—l)k if M = PP, --- Py, a product of distinct irreducible
polynomials in €.
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Clearly, 4} is multiplicative for all real numbers a. It is easy to show that

L * 1 = Hayp (14)

for all real numbers «, (3. Note that
pru=1Io and p®, = (,ug)_l

for all real numbers a.

In the classical case, the distributive property of completely multiplicative
functions discovered by J. Lambek ([6]), asserts that an arithmetic function
f is completely multiplicative if and only if it distributes over every Dirichlet
product. It is shown in [4] that such Lambek’s result holds in the polynomial
case. Afterward, E. Langford points out in [7] an interesting characterization
of completely multiplicative functions f using partially discriminative prod-
ucts, which states that given a multiplicative function f, then f is completely
multiplicative if and only if it distributes over some partially discriminative
products. In 2004, V. Laohakosol and N. Pabhapote ([8]) gave a necessary and
sufficient condition for the a'" power function f® to be completely multiplica-
tive. It states that given a multiplicative function f and a € R\{0}, then f¢
is completely multiplicative if and only if f(p¥) = (T¥/*)(—a)* f(p)* for all
primes p and all £ € N.

The first objective of this paper is to establish some characterizations of
completely multiplicative polynomial-arithmetic functions through their dis-
tributive property using polynomial-partially discriminative products and gen-
eralized polynomial-M6bius function. The second objective is to give a nec-
essary and sufficient condition for the a* polynomial-power function to be
completely multiplicative for all nonzero real numbers «.

2 Basic results

To facilitate the proof of our main results, we recall the following results in [5]
and [4].

Proposition 1. ([5]) If f € A(Q) is multiplicative, then f is completely mul-
tiplicative if and only if f (Pk) =f (P)k for all irreducible polynomials P € Q
and for all k € N.

Proposition 2. ([5]) Let f € A(Q) be multiplicative. Then f is completely
maultiplicative if and only if f~1 = fu'.

Theorem 1. ([5]) Let f € P(Q). Then f is multiplicative if and only if
Logf(M) = 0 whenever M is not a power of an irreducible polynomial.
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Lemma 1. ([4]) A multiplicative function f € A () is completely multiplica-
tive if and only if

flg*h)=fg=fh
for all g, h € A(Q).

Theorem 2. ([4]) Let f € P () be multiplicative and o € R. We have
(i) if f is completely multiplicative then f& = u® f;

(ii) for o ¢ {0,1}, if f& = uS, f, then f is completely multiplicative.

3 Completely multiplicative polynomial-arithmetic
functions

In this section, we first define the definition of partially discriminative products
for polynomial-arithmetic functions similar to the classical cases, defined by E.
Langford ([7]).

Definition 5. For polynomial-arithmetic functions g and h, a Dirichlet prod-
uct g x h is called polynomial-partially discriminative if for every irreducible
polynomial P € Q and k € N,

(9% h) (P*) = g(1a)h (P*) +g (P*) h(1a),
then k = 1.

Note that u * u is a polynomial-partially discriminative product.
Using Proposition 1, Lemma 1 and the same proof as in [7], we have the
following theorem.

Theorem 3. Suppose that f € A(Q) is multiplicative. Then f is completely
multiplicative if and only if f distributes over some polynomial-partially dis-
criminative product g * h.

The following two corollaries are immediate consequences of Proposition 2
and Theorem 3, respectively.

Corollary 1. For any multiplicative function f € A(Q), f is completely mul-
tiplicative if and only if f distributes over ut xu (= Ig).
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Proof. Let f € A(Q) be a multiplicative function. Then f(1p) = 1 and using
Proposition 2, we obtain
f distributes over u@ s u < f(u* xu) = fu * fu
& fIo = fu * fu
& lo = fu = f
& fh=fuf
< f is completey multiplicative.

O

Corollary 2. Let f be a multiplicative polynomial-arithmetic function, g be a
polynomial-arithmetic function with g (1g) =1 and o € R\ {0}.

A. If f is completely multiplicative, then
Flg*us) = fogx fud = fgx ==

B. Assume that
(9% m) (P*) — gy (P*) =g (P¥) #0 (15)
for all integers k > 2 and for all irreducible polynomials P in Q. If

Flog#pd) = fgx fug,
then f is completely multiplicative.

Proof. A. Assume that f is completely multiplicative. By Lemma 1 and The-
orem 2(i) , we have

Flg*ns) = fogxfus=fg*f >

B. Since g(1g) = 1, then the condition (15) implies that the Dirichlet prod-
uct g p! is a polynomial-partially discriminative. Hence part B. follows from
Theorem 3. U

In the proof of the theorem in [3], P. Haukkanen proved that if f is an
arithmetic function with f(1) > 0 and n is a positive integer, then f*(n) is
a polynomial in . Now for the next main result, we prove this fact for the
polynomial case as follows:

Lemma 2. For o € R, if f is a multiplicative function in A(2), then f*(M)
is a polynomial in « for fixed M € €.

Proof. Assume that f € A(Q) is a multiplicative function. Then f(1g) = 1.
Let M € Q be fixed. We will prove that f*(M) is a polynomial in « by
induction on deg(M). If deg(M) = 0, then M = 1g and so f*(lg) = 1 is a
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constant polynomial. Assume that f*(D) is a polynomial in « for all D € Q
such that deg(D) < deg(M). Now

[ = Expa(aLogq f), (16)

where Expgq is the polynomial-exponential operator and Logq is the polynomial-
logarithmic operator (associated with a completely additive polynomial-arithmetic
function a). Using (16), (10) and a(lg) = 0, we obtain

f*(M) = Ezpa(aLoga f)(M)

1 () M M
= —_— E _— _—
iy 2B (aLogn 1) () Lo 1) (5 ) o ()
D|M
1 @ M M
~ s, (D) etem (5)e(%)
1 @ M M
=200 > [ (D) (aLoga f) (3) a (5> ;
D|M,D#£M
and the desired result follows from the induction hypothesis. O

The following Theorem is our second main result.

Theorem 4. Let f € A(Q) be a multiplicative function, g a polynomial-
arithmetic function with g(1lg) =1 and o € R\ {0}. Assume that

(g% pg) (P*) =g (P ) +a#0 (17)
for all integers k > 2 and for all irreducible polynomials P in Q. If
Floxnd) =rfaxf*, (18)

then f is completely multiplicative.
Proof. Since f € A(f) is a multiplicative function, we have f(lg) = 1. To
show that f is completely multiplicative, it suffices to show that

f(P*) = f(P)* (19)

for all irreducible polynomials P € 2 and for all k¥ € N. By Proposition 1, we
prove (19) by induction on k. It is clear for k = 1, so assume that & > 2 and

f(PY) =f(P) forallie{1,....k —1}. Using (7) and f° = I, rewrite (18)
in an equivalent form as
Flg*ug) = f* = fg.
Since f(1g) = g(1a) = pil(1a) = f*(1g) = 1, we get
Fa(P*) =f(g * pd)(P*) + f(g * p)(P*~1) f*(P)
+ o g x ) (P) (PR + £ (P). (20)
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We pause to note two important facts.
Fact 1. If f(P%) = f(P)" for 1 <i < j, then

Fey= X e =gy (T

inetie=j J

for all r € N.
Fact 2. For j € N, we have

= ()= (743)
for all o € R.

Using induction hypothesis, Fact 1 and Fact 2, we get that

r+i—1
1

f@ﬂ:fwv( ):wa£Aﬂ) (=1 k—1)

for all r € N. It follows by induction hypothesis and Fact 2 that
frPYy= Y f(PR) f(PY)

i1+ +ir=k

= > F(P) - f(P) + 1 f(PF),

i1+~~~+’ir:k7i_7#k

= > F(P) - f(P) + 1 f(PF),
i1t tin=k,i;#k
= f(P)k > 1+ rf(P*),

i1t =h, sk

e [T o] e
= F(P)* (02, (P) — ) £ f(PY)

for all r € N.
Claim. 1

FUPY = FPY2 (P (=1, k1)

for all real numbers o.

(22)

(23)

Proof of Claim 1. For a € R, we have that f®(P?) is a polynomial in «
for all i € {1,...,k — 1}, by Lemma 2. By (12) and (13), 2, (P?) is also
a polynomial in « for all ¢ € {1,...,k — 1}. Thus, both sides of (23) are
polynomials in a. It follows from (21) that (23) is true for infinitely many
values of o, so f*(P%) — f(P)'uf,, (P") is the zero polynomial. Therefore, (23)
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holds for all real numbers «.
Claim. 2

FoPE) = F(P)F (u20(PF) = a) + af (PY)

for all real numbers a.

Proof of Claim 2. This is proved in a manner similar to Claim 1 using (22).
Returning to (20) and using the induction hypothesis together with Claim

1 and Claim 2, we obtain

Fg(P®) =F(P®) (g ) (P*) + F(P) (g x pa ) (P* ) f(P)pla(P)
oo [(P) g )PV (P2 (P ) + F(P)F (12a(PF) —a)
+af(P")
=F(P*)(g % u2)(P*)
+ F(PY* {(g + p)(PF 2 (P) + -+ (g4 p) (P2 a(P* ) + p20(PF) — af
+ af(P")
=1 (P) g i) (PY) + P { (g2 120 ) () = (g 2) (PY) = a} + af (PF)
=f(P*) (g u)(PY) + F(P) {g(P*) = (g% 1) (PF) —a} + af(PY), by (14).

Thus,

FP) {(g % ua)(P*) + a = g(P)} = F(P)* {(g % ug)(P*) + o — g(P*)},

and the assertion follows from the assumption (17). O

4 Completely multiplicative polynomial-
arithmetic functions and the o'* polynomial-
power functions

In this section, we give a necessary and sufficient condition for the a*” polynomial-
power function to be completely multiplicative, which is our last main result
(Theorem 7). To facilitate the proof, we first prove Lemma 3, Theorem 5 and
Theorem 6.

Lemma 3. For an irreducible polynomial P € Q, if f(1q) = 1 and f(P?) =
F(P) foralli€{2,...,n}, then

S =0

forallie{2,...,n}.
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Proof. This is easily proved by induction on n.
([
In 1974, T. B. Carroll gave a characterization of completely multiplicative
arithmetic functions in the classical case ([2]), which states that if f is an
arithmetic function such that f(1) > 0, then f is completely multiplicative if
and only if

Logf(n) (log p)f(p)*  if n=p®, p prime, a > 1,
0} =
g 0 otherwise,

where Log is the Rearick’s logarithmic operator ([9],[10]). For the polynomial
case, we prove such result using Lemma 3.

Theorem 5. Let f € P (Q). Then f is completely multiplicative if and only if
for all irreducible polynomials P € Q and all integers k > 1.

f(llj)’C if M= Pk,
0 otherwise.

Loga f(M) = {

Proof. 1f f is completely multiplicative, then f is multiplicative and so by Theo-
rem 1, Logf(M) = 0 whenever M is not a power of an irreducible polynomial.
If M = P* for some irreducible polynomial P in Q and k € N, then using
Proposition 1, Proposition 2, f~!(1g) = 1 and f~!(P) = —f(P), we obtain

Loga f(M) = Loga f(P"*)

k
- aulak) D FPOFH P a(PY)
=0
= aulak) [F(PR)F (10)a(Pr) + F(PE=1) =1 (P)a(PE—Y)]
= k:a%P) [k‘f(Pk)a(P) — (k- l)f(P)k_lf(P)a(P)]
= % [kf(P)* — (k—1)f(P)¥]
_f(P)*
k

Conversely, by Theorem 1, we have f is multiplicative and so f(lg) =
f'(1g) =1 and f~1(P) = —f(P) for all irreducible polynomials P € Q. To
show that f is completely multiplicative, it suffices to show

F(P*) = f(P)*
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for all irreducible polynomials P € {2 and all positive integers k. Let P € Q) be
an arbitrary irreducible polynomial. By assumption, we have

f(TP)Q = Loga f(P?)
= a(]132) [f(1o)f 1 (PHa(le) + f(P)f 1 (P)a(P) + f(P*) f ' (1q)a(P?)]
1 9 )
= ot [2IP(P) — (PPa(P)

= F(P?) - SF(PY.

It follows that
f(P?) = f(P)>.

Let k be a positive integer greater than two. Assume that

f(Ph) = f(Py

for alli € {1,...,k —1}. By Lemma 3, f~Y(P") =0 forallie {2,...,k—1}.
It follows from the assumption that

@ = Loga f(P¥)
1

(P*)
1

ka(P)
1

FPYFTHPEa(PY)

|
IS
o

= Q)N (PHYa(le) + F(PF FTH(P)a(PY) + f(PR) 7 (1a)a(PY)
= —(k—1)f(P)*a(P) + kf(P*)a(P)

a(P)
(1= B)F(PY + k(P

—

X

i

which implies that f(P*) = f(P)* for all irreducible polynomials P € 2 and
all positive integers k. U
By the same proof as in [1], we have the following theorem.

Theorem 6. Let f € A(Q) be multiplicative. Then f is completely multiplica-
tive if and only if
7Pty =0 (24)

for all irreducible polynomials P € Q and all integers a > 2.

Our last main result reads:
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Theorem 7. Let f € P(Q) be multiplicative and o € R\{0}. Then f* is
completely multiplicative if and only if

14 = (7)o sy (25)

for all irreducible polynomials P € Q and all positive integers k.

Proof. Assume that f* is completely multiplicative. By Theorem 2 (i) and (8),
we have

W1yl = ()Y = 1.
Let P € Q be any irreducible polynomial and £ € N. Then

—1/a

FPR) =P = () e

By Theorem 5, we have

f*(P) = Logaf*(P)
= Logq (Expa(aLogaf)) (P)

= (aLoga f)(P)
= % [f(la)f~ " (P)a(la) + f(P)f " (1a)a(P)]

since a(lg) = 0 and f~1(1q) = 1. Hence,

14 = (7))t terent = (7)) e

To prove the converse, we assume (25) and prove that f* is completely
multiplicative. Since f € P(Q) is multiplicative, Logqg f(M) = 0, whenever M
is not a power of an irreducible polynomial, by Theorem 1. Using (11) and (6),
we have f¢ € P(Q) and

Loga f*(M) = aLoga f(M) = 0,

whenever M is not a power of an irreducible polynomial. By Theorem 1 again,
f¢ is multiplicative. To prove that f¢ is completely multiplicative, it suffices
to prove, by Theorem 6, that

FP) =0

for all irreducible polynomials P € 2 and all integers k > 2.
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Let g = f~“. Then
Logag = Logaf~% = Log (Expq (—aLoga f)) = —aLoga f.

We must show that g(P*) = 0 for all irreducible polynomials P € € and all
integers k > 2. Since

(Loga f)(M) = ﬁ(df «[TH(M)  (FeP(Q), MeQ\{la}),
we have
f*dg=—alg*df).
Hence,
k , k , ,
D F(PHAg(PF) = —a Y g(Ph)df(P*7) (26)
1=0 1=0

for all irreducible polynomials P € 2 and all positive integers k. Let P be an
irreducible polynomial in © and k& € N. Using (11) and taking k = 1 in (26),
we get

o(P) = —af(P)
Taking k = 2 in (26) and using g(P) = —af(P), we obtain
29(P?) = —a [2f(P?) — (a + 1) f(P)?]
——ap(TY ") carsrr - @ sy
= —a[(a+1)f(P)* - (a+1)f(P)’]
-0,

so g(P?) = 0. Consider k¥ > 3 and assume that g(P?) = 0 for all i €
{2,,...,k —1}. Returning to (26), we get that

kg(P*) = —kaf(P*) + [(k — 1)a® + o] f(P* 1) f(P).
It follows from (25) that

-1/
k

—1/a

kg(P*) = —ka( ) (—a)* F(P)*+[(k = 1)a® + ] ( L 1) (—e)* ' H(P) T f(P) =0,

so g(P*) = 0 for all irreducible polynomials P €  and all integers k > 2. [
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