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Abstract

Let p(x, y) = y2 + b1y − b0 ∈ Fq[x, y], where Fq is a finite field of
q elements; b1, b0 ∈ Fq[x] and let R := Fq[x, y]/ (p(x, y)). A Scheicher-
Thuswaldner algorithm enables us to represent each element of R through
a digit system. All possible representations of elements in R are deter-
mined when deg b1 ≤ deg b0. As for the case deg b1 > deg b0, the same
analysis is carried out subject to an assumption on the existence of a
unique maximal term.

1 Introduction

In [2], Scheicher and Thuswaldner, devised a digit system for elements in a
polynomial ring of two indeterminates detailed as follows: let Fq be a finite
field of q elements, and

p(x, y) = yn + bn−1y
n−1 + · · ·+ b1y − b0 ∈ Fq[x, y],

where bi ∈ Fq [x] and deg b0 > 0. Let

N := {g ∈ Fq[x] : deg g < deg b0}
R := Fq [x, y]/ (p(x, y)) =

{
c0 + c1y + · · ·+ cn−1y

n−1 : ci ∈ Fq [x]
}

.
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Then each r ∈ R \ {0} is uniquely represented as

r = r0 + r1y + · · ·+ rn−1y
n−1, rj ∈ Fq [x]. (1)

We say that r ∈ R \ {0} has a finite y-adic representation if it admits a finite
representation of the form

r = d0 + d1y + · · ·+ dhyh , (2)

with all the di ∈ N and h ∈ N0 := N ∪ {0}. The polynomials di are called the
digits of r. If each r ∈ R \ {0} has a unique finite y-adic representation (2),
then p(x, y) is referred to as a digit system polynomial (DS-polynomial) with y
being the base and N being the digit set.

In order to determine those p(x, y) which are DS-polynomials, Scheicher and
Thuswaldner make use of the following algorithm. Given a general element as
in (1), i.e.,

r := r(0) = r
(0)
0 + r

(0)
1 y + · · ·+ r

(0)
n−1y

n−1 ∈ R \ {0},

by the division algorithm there exist unique d0 ∈ N and r̃0 :=
[
r
(0)
0 /b0

]
∈ Fq [x]

such that
r
(0)
0 = r̃0b0 + d0 with deg r̃0 < deg r

(0)
0 . (3)

Using
b0

y
= b1 + b2y + · · ·+ bnyn−1, (4)

we define

r(1)
(
:= r

(1)
0 + r

(1)
1 y + · · ·+ r

(1)
n−1y

n−1
)

=
r(0) − d0

y
(5)

=
(
r̃0b1 + r

(0)
1

)
+

(
r̃0b2 + r

(0)
2

)
y + · · ·+

(
r̃0bn + r(0)

n

)
yn−1

so that
r
(1)
i = r̃0bi+1 + r

(0)
i+1 (0 ≤ i ≤ n − 1).

Similarly, there exist unique d1 ∈ N and r̃1 =
[
r
(1)
0 /b0

]
∈ Fq [x] such that

r̃0b1 + r
(0)
1 = r

(1)
0 = r̃1b0 + d1.

Continuing in the same manner, for k ≥ 1, we define

r(k) := r
(k)
0 + r

(k)
1 y + · · ·+ r

(k)
n−1y

n−1 =
r(k−1) − dk−1

y
(6)
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so that, for i = 0, 1, . . . , n− 1, we have

r
(k)
i = r̃k−1bi+1 + r

(k−1)
i+1 (7)

= r̃k−1bi+1 + r̃k−2bi+2 + · · ·+ r̃0bi+k + r
(0)
i+k.

In particular, there exist unique dk ∈ N and r̃k ∈ Fq [x] such that

r̃k−1b1 + r̃k−2b2 + · · ·+ r̃0bk + r
(0)
k = r

(k)
0 = r̃kb0 + dk, (8)

where
r̃k =

[
r
(k)
0 /b0

]
(9)

and r̃j = 0 if j < 0, bj = 0 if j > n, bn = 1, r
(0)
j = 0 if j > n − 1. The y-adic

representation of r is thus of the form

r = r(0) = d0 + d1y + · · ·+ dk−1y
k−1 + ykr(k). (10)

If there exists k ∈ N such that r(k) = 0, then (10) yields a finite y-adic repre-
sentation for r of length k. If there are indices j < k such that r(j) = r(k), then
(10) yields an ultimately periodic representation for r with period k − j.

The two main results of Scheicher-Thuswaldner are

I. p(x, y) is a DS-polynomial if and only if maxi=1,...,n−1 deg bi < deg b0 ;

II. for each r ∈ R \ {0}, the sequence Ur :=
(
r = r(0), r(1), r(2), . . .

)
is ulti-

mately periodic if and only if maxi=1,...,n−1 deg bi ≤ deg b0.

We are interedted here in investigating what kind of expansions are possible in
the simplest case when n = 2.

Throughout the rest of the paper, let

p(x, y) = y2 + b1y − b0 ∈ Fq[x, y]

with
B0 := deg b0 > 0, B1 := deg b1 = β1 + B0 (β1 ∈ Z).

Here,
R := Fq [x, y]/ (p(x, y)) = {c0 + c1y ; ci ∈ Fq [x]} .

Take any starting element r := r(0) ∈ R \ {0}, and write it using Scheicher-
Thuswaldner algorithm steps (7) and (8) recursively, we get

r(0) = r
(0)
0 + r

(0)
1 y = (r̃0b0 + d0) + r

(0)
1 y (11)

r(1) = r
(1)
0 + r

(1)
1 y = (r̃0b1 + r

(0)
1 ) + r̃0y = (r̃1b0 + d1) + r̃0y (12)

r(2) = r
(2)
0 + r

(2)
1 y = (r̃1b1 + r̃0) + r̃1y = (r̃2b0 + d2) + r̃1y (13)

...

r(k) = r
(k)
0 + r

(k)
1 y = (r̃k−1b1 + r̃k−2) + r̃k−1y = (r̃kb0 + dk) + r̃k−1y (k ≥ 2).

(14)
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For each of presentation, let Ur =
(
r = r(0), r(1), r(2), . . .

)
. The two separate

cases, B1 ≤ B0 and B1 > B0, are analyzed in Sections 2 and 3, respectively.

2 The case B1 ≤ B0

By the two main results of Scheicher-Thuswaldner, each element in R \ {0}
has an ultimately periodic expansion, which also includes the case of finite
expansions. We now determine all possible expansions of elements in R \ {0}.
Note also that in this case, β1 ≤ 0.

There is a trivial case when deg r
(0)
0 < B0 and deg r

(0)
1 < B0, which from

the construction step (6) clearly gives r
(0)
0 = d0, r(1) = r

(0)
1 = d1, r(2) = 0,

and so
Ur =

(
r(0), r(1), r(2) = 0, 0, . . .

)

is a finite sequence of length ≤ 2. Furthermore, if r
(0)
1 �= 0, then the sequence

Ur has length 2, while if r
(0)
1 = 0, the sequence is of length 1.

For the rest of this section, we assume deg r
(0)
0 ≥ B0 or deg r

(0)
1 ≥ B0.

From the relation (12), we treat separately two cases: deg r
(1)
0 < B0 and

deg r
(1)
0 ≥ B0.

Case 1. deg r
(1)
0 = deg

(
r̃0b1 + r

(0)
1

)
< B0.

Then r̃1 = 0 and r(2) = r̃0 with deg r
(2)
0 = deg r̃0 = deg r

(0)
0 − B0.

If r̃0 = 0, then r(2) = 0, and so r(0) has a finite expansion of length 2.
If r̃0 �= 0, there are two subcases.
Subcase 1.1: deg r̃0 < B0. We have r(2) = r̃0 = d2, and (6) yields r(3) = 0,

i.e., r(0) has a finite expansion of length 3.
Subcase 1.2: deg r̃0 ≥ B0. From (13), we have

r(2) = r̃0 = r̃2b0 + d2 �= 0

with
r̃2 �= 0, deg r̃2 = deg r̃0 − B0 = deg r

(0)
0 − 2B0. (15)

From (14), we have

r(3) = r̃2b1 + r̃2y = (r̃3b0 + d3) + r̃2y �= 0

with

deg r
(3)
0 = deg r̃2b1 = deg r

(0)
0 + β1 − B0, deg r̃3 = deg r

(0)
0 + β1 − 2B0. (16)

From (14), we have

r(4) = (r̃3b1 + r̃2) + r̃3y = (r̃4b0 + d4) + r̃3y. (17)
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Consider now the two possibilities β1 = 0 and β1 �= 0.
⊕ If β1 = 0, using (16) and (15), we get deg r̃3b1 = deg r

(0)
0 − B0 >

deg r
(0)
0 − 2B0 = deg r̃2, and so

deg r
(4)
0 = deg r̃3b1 = deg r

(0)
0 −B0, deg r̃4 = deg r̃3b1−deg b0 = deg r

(0)
0 −2B0.

Continuing in the same manner, we obtain

r(k) = r
(k)
0 + r

(k)
1 y = (r̃k−1b1 + r̃k−2) + r̃k−1y

with
deg r

(k)
0 = deg r

(0)
0 − B0, deg r̃k = deg r

(0)
0 − 2B0 (k ≥ 2).

Since r
(k)
0 and r̃k are polynomials over a finite field of fixed degree, there must

exist two integers j1, j2 with 2 ≤ j1 < j2 such that r(j1) = r(j2). This implies
r(0) has a periodic, non-finite, expansion with period j2 − j1.

⊕ If β1 < 0 then r(4) is of the same shape as in (17), but using (16) and
(15), we get

deg r̃3b1 = deg r
(0)
0 + 2β1 − B0, deg r̃2 = deg r

(0)
0 − 2B0.

There are three possibilities depending on deg r̃3b1 and deg r̃2.

• deg r̃3b1 > deg r̃2 (i.e., deg r
(0)
0 +2β1−B0 > deg r

(0)
0 −2B0 ⇐⇒ B0+2β1 >

0). The relations (17) and (16) give then

deg r
(4)
0 = deg r̃3b1 = deg r

(0)
0 + 2β1 − B0,

deg r̃4 = deg r
(0)
0 + 2β1 − 2B0 = deg r̃3 + β1. (18)

From the relation (14),

r(5) = (r̃4b1 + r̃3) + r̃4y = (r̃5b0 + d5) + r̃4y, (19)

using (18), we get

deg r
(5)
0 = deg r̃4b1 = deg r

(0)
0 + 3β1 − B0, deg r̃5 = deg r

(0)
0 + 3β1 − 2B0.

Continuing in the same manner, for r(k) = r
(k)
0 + r

(k)
1 y, we have

deg r
(k)
0 = deg r

(0)
0 + (k − 2)β1 − B0 (k ≥ 4).

Thus, r(k) = 0 for some k ≥ 5, observing that r(4) �= 0, i.e., r(0) has a
finite expansion of length k ≥ 5.
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• deg r̃3b1 < deg r̃2 (i.e., deg r
(0)
0 +2β1−B0 < deg r

(0)
0 −2B0 ⇐⇒ B0+2β1 <

0). Then (17) and (16) give

deg r
(4)
0 = deg r̃2 = deg r

(0)
0 − 2B0,

deg r̃4 = deg r̃2 − B0 = deg r
(0)
0 − 3B0 = deg r̃3 − β1 − B0.

Using the same shape of r(5) as in (19), since deg r̃4b1 = deg r̃3, we get

deg r
(5)
0 ≤ deg r

(0)
0 + β1 − 2B0, deg r̃5 ≤ deg r

(0)
0 + β1 − 3B0.

Using (14), from r(6) = (r̃5b1 + r̃4) + r̃5y = (r̃6b0 + d6) + r̃5y, since

deg r̃5b1 ≤ deg r
(0)
0 + 2β1 − 2B0 < deg r

(0)
0 − 3B0 = deg r̃4,

we see that

deg r
(6)
0 = deg r̃4 = deg r

(0)
0 − 3B0, deg r̃6 = deg r

(0)
0 − 4B0.

Continuing in the same manner, from r(7) = (r̃6b1 + r̃5) + r̃6y = (r̃7b0 +
d7) + r̃6y, we get

deg r
(7)
0 ≤ deg r

(0)
0 + β1 − 3B0, deg r̃7 ≤ deg r

(0)
0 + β1 − 4B0,

and from r(8) = (r̃7b1 + r̃6) + r̃7y = (r̃8b0 + d8) + r̃7y, we get

deg r
(8)
0 = deg r

(0)
0 − 4B0, deg r̃8 = deg r

(0)
0 − 5B0.

In general, for k ≥ 2, we have

deg r
(2k)
0 = deg r

(0)
0 − kB0 → −∞ (k → ∞)

deg r
(2k+1)
0 ≤ deg r

(0)
0 + β1 − kB0 → −∞ (k → ∞).

Thus, there must exist k ≥ 5 such that r(k) = 0, noting that r(4) �= 0,
i.e., r(0) has a finite expansion of length k ≥ 5.

• deg r̃3b1 = deg r̃2 (i.e., deg r
(0)
0 + 2β1 − B0 = deg r

(0)
0 − 2B0 ⇐⇒ 2β1 =

−B0).
Then (17) and (16) give

deg r
(4)
0 ≤ deg r

(0)
0 + 2β1 − B0, deg r̃4 ≤ deg r

(0)
0 + 2β1 − 2B0. (20)

Using the same shape of r(5) as in (19), since

deg r̃4b1 ≤ deg r
(0)
0 + 3β1 − B0 = deg r̃3
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we see that

deg r
(5)
0 ≤ deg r

(0)
0 + 3β1 − B0, deg r̃5 ≤ deg r

(0)
0 + 3β1 − 2B0.

Using (14), from r(6) = (r̃5b1 + r̃4) + r̃5y = (r̃6b0 + d6) + r̃5y, since
deg r̃5b1 ≤ deg r

(0)
0 + 4β1 − B0, together with (20) we get

deg r
(6)
0 ≤ deg r

(0)
0 + 4β1 − B0, deg r̃6 ≤ deg r

(0)
0 + 4β1 − 2B0.

Continuing in the same manner, we have for k ≥ 4

deg r
(k)
0 ≤ deg r

(0)
0 + (k − 2)β1 − B0 → −∞ (k → ∞),

and so there exists k ≥ 5 such that r(k) = 0, noting that r(4) �= 0, i.e.,
r(0) has a finite expansion of length k ≥ 5.

Summarizing the Case 1, we see that r(0) always has a finite expansion, except
only in the case deg r̃0 ≥ B0, β1 = 0, where it has a non-finite, ultimately
periodic expansion.

Case 2. deg r
(1)
0 = deg

(
r̃0b1 + r

(0)
1

)
≥ B0.

Then (12) gives r̃1 �= 0, and we have two subcases depending upon whether
r̃0 = 0.

Subcase 2.1: r̃0 = 0 (⇐⇒ deg r
(0)
0 < B0).

The relation (12) gives r(1) = r
(0)
1 = r̃1b0 + d1, and so deg r̃1 = deg r

(0)
1 − B0.

From (13), we have r(2) = r̃1b1 + r̃1y = (r̃2b0 + d2) + r̃1y �= 0 and so

deg r
(2)
0 = deg r̃1b1 = deg r

(0)
1 + β1, deg r̃2 = deg r

(0)
1 + β1 − B0.

⊕ If β1 = 0, from (14), we get r(3) = (r̃2b1 + r̃1)+ r̃2y = (r̃3b0 +d3)+ r̃2y, with

deg r
(3)
0 = deg r̃2b1 = deg r

(0)
1 , deg r̃3 = deg r

(0)
1 − B0.

From (14) again, we get r(4) = (r̃3b1 + r̃2) + r̃3y = (r̃4b0 + d4) + r̃3y, with
deg r̃3b1 = deg r

(0)
1 and so

deg r
(4)
0 = deg r̃3b1 = deg r

(0)
1 , deg r̃4 = deg r

(0)
1 − B0.

Continuing in the same manner, for r(k) = r
(k)
0 + r̃k−1y, we have

deg r
(k)
0 = deg r

(0)
1 , deg r̃k−1 = deg r

(0)
1 − B0 (k ≥ 2).

Since r
(k)
0 , r̃k−1 both ∈ Fq[x], there are indexes 1 ≤ j1 < j2 such that r(j1) =

r(j2), i.e., r(0) has a non-finite ultimately periodic expansion with period j2−j1.
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⊕ If β1 < 0, using the same shape of r(3) as in (14) we have deg r̃2b1 =
deg r

(0)
1 + 2β1 and deg r̃1 = deg r

(0)
1 −B0. Checking three separate possibilities

deg r
(0)
1 + 2β1 > deg r

(0)
1 − B0, deg r

(0)
1 + 2β1 < deg r

(0)
1 − B0,

deg r
(0)
1 + 2β1 = deg r

(0)
1 − B0,

using the same analysis as Subcase 1.2 (with β1 < 0), we arrive at the conclusion
that r(0) has a finite expansion.

Subcase 2.2. r̃0 �= 0.

Then (11) yields deg r
(0)
0 = deg r̃0b0, and so deg r̃0b1 = deg r

(0)
0 + β1. Taking

from (12), i.e., r(1) = (r̃0b1 + r
(0)
1 ) + r̃0y into account, we need to treat three

possibilities deg r
(0)
0 +β1 > deg r

(0)
1 , deg r

(0)
0 +β1 < deg r

(0)
1 and deg r

(0)
0 +β1 =

deg r
(0)
1 .

Possibility 1: deg r
(0)
0 + β1 > deg r

(0)
1 . From (12) we have

deg r
(1)
0 = deg r̃0b1 = deg r

(0)
0 + β1, deg r̃1 = deg r

(0)
0 + β1 − B0.

⊕ If β1 = 0, then proceeding as in Subcase 1.2 (with β1 = 0), we have

deg r
(k)
0 = deg r

(0)
0 , deg r̃k = deg r

(0)
0 − B0 (k ≥ 1),

and so r(0) has a non-finite, periodic expansion.
⊕ If β1 < 0, then proceeding as in Subcase 1.2 (with β1 < 0), we arrive at the
conclusion that r(0) has a finite expansion.

Possibility 2: deg r
(0)
0 + β1 < deg r

(0)
1 . From (12) we have

deg r
(1)
0 = deg r

(0)
1 , deg r̃1 = deg r

(0)
1 − B0 .

⊕ If β1 = 0, from (13), r(2) = (r̃1b1 + r̃0) + r̃1y = (r̃2b0 + d2) + r̃1y �=
0, we see that deg r̃1b1 = deg r

(0)
1 , deg r̃0 = deg r

(0)
0 − B0. By assumption,

deg r
(0)
0 + β1 < deg r

(0)
1 and β1 = 0, we get deg r

(0)
0 − B0 < deg r

(0)
1 and

deg r
(2)
0 = deg r̃1b1 = deg r

(0)
1 , deg r̃2 = deg r

(0)
1 − B0. From (14), r(k) =

r
(k)
0 + r

(k)
1 y = (r̃k−1b1 + r̃k−2) + r̃k−1y, and we similarly obtain

deg r
(k)
0 = deg r

(0)
1 , deg r̃k = deg r

(0)
1 − B0 (k ≥ 1).

Using the same analysis as in Subcase 1.2 (with β1 = 0), we come to the
conclusion that r(0) has a non-finite, periodic expansion.
⊕ If β1 < 0, then from (12), we get deg r̃1b1 = deg r

(0)
1 +β1, deg r̃0 = deg r

(0)
0 −

B0 . Treating three possible cases

deg r
(0)
1 +β1 > deg r

(0)
0 −B0, deg r

(0)
1 +β1 < deg r

(0)
0 −B0, deg r

(0)
1 +β1 = deg r

(0)
0 −B0
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and using the same analysis as in Subcase 1.2 (with β1 < 0), we conclude that
r(0) has a finite expansion.

Possibility 3: deg r
(0)
0 + β1 = deg r

(0)
1 . From (12), we have

deg r
(1)
0 ≤ deg r

(0)
0 + β1, deg r̃1 ≤ deg r

(0)
0 + β1 − B0.

⊕ If β1 = 0, then an analysis similar to Subcase 1.2 (with β1 = 0) shows that
deg r

(k)
0 and deg r̃k (k ≥ 1) are bounded, and so either both are of constant val-

ues from certain point onward resulting in a non-finite but ultimately periodic
expansion, or both are decreasing over certain subsequence resulting in a finite
expansion. Example 1 and Example 2 following the statement of Theorem 1
illustrate that both of these possible conclusions do indeed exist.
⊕ If β1 < 0, then (13) gives deg r̃1b1 ≤ deg r

(0)
0 + 2β1, deg r̃0 = deg r

(0)
0 − B0.

Treating the three possible cases

deg r
(0)
0 + 2β1 > deg r

(0)
0 − B0,

deg r
(0)
0 + 2β1 < deg r

(0)
0 − B0,

deg r
(0)
0 + 2β1 = deg r

(0)
0 − B0,

and using an analysis similar to that of Subcase 1.2 (with β1 < 0), we conclude
that r(0) has a finite expansion.

Summarizing the findings in Case 2, we have
(a) if r̃0 = 0, β1 = 0, or r̃0 �= 0, deg r

(0)
0 + β1 > deg r

(0)
1 , β1 = 0, or r̃0 �=

0, deg r
(0)
0 + β1 < deg r

(0)
1 , β1 = 0, then r(0) has a non-finite and ultimately

periodic expansion;
(b) if r̃0 �= 0, deg r

(0)
0 +β1 = deg r

(0)
1 , β1 = 0, then r(0) can have either a finite

or a non-finite but periodic expansion;
(c) in all other cases r(0) has a finite expansion.

Collecting all the results found, we have:

Theorem 1. Let p(x, y) = y2 + b1y − b0 ∈ Fq[x, y] with

B0 := deg b0 > 0, B1 := deg b1 = β1 + B0 with β1 ≤ 0,

and let r := r(0) ∈ R \ {0} := {c0 + c1y ; ci ∈ Fq [x]} \ {0}.
(i) If β1 < 0, then r(0) always has a finite expansion.
(ii) If β1 = 0, then r(0) always has a non-finite, ultimately periodic expan-

sion except only when r̃0 �= 0, deg r
(0)
0 +β1 = deg r

(0)
1 , β1 = 0 where both finite

and non-finite expansions can occur.

We end this section by giving two examples exemplifying the point made
in (b) above.
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Example 1. Let p(x, y) = y2 + xy − x ∈ F3[x, y] with b1 = b0 = x and
B0 = 1 = 0 + 1 = B1, β1 = 0. Take

r(0) := r
(0)
0 + r

(0)
1 y = (x2 + x) + (2x2 + x)y.

From algorithm steps (11) - (14), we have

r(0) = (x + 1)x + (2x2 + x)y ; r̃0 �= 0, deg r
(0)
0 + β1 = deg r

(0)
1 = 2

r(1) = 2x + (x + 1)y, r(2) = 1 + 2y, r(3) = 2, r(4) = 0,

i.e., r(0) has a finite expansion.
Example 2. Let p(x, y) = y2 + xy − x ∈ F3[x, y] with B0 = 1 = 0 + 1 = B1

and β1 = 0. Take
r(0) := r

(0)
0 + r

(0)
1 y = x + xy.

From algorithm steps (11) - (14), we have

r(0) = x + xy ; r̃0 = 1 �= 0, deg r
(0)
0 + β1 = deg r

(0)
1 = 1

r(1) = 2x + y, r(2) = (2x + 1) + 2y, r(3) = (2x + 2) + 2y = r(4),

and so r(0) has a non-finite, ultimately periodic expansion.

3 The case B1 > B0

This is the case investigated in [1]. The analysis in [1] yields

Theorem 2. Let

p(x, y) = y2 + b1y − b0 ∈ Fq [x, y], B1 := deg b1, B0 := deg b0.

If B1 > B0 > 0, then each r ∈ R\ {0} := {c0 + c1y; ci ∈ Fq[x]} \ {0} either has
a finite or an infinite but non-periodic Scheicher-Thuswaldner representations.

More precisely, r ∈ R\ {0} has a finite expansion if and only if there exists
a non-negative integer k such that

max
(
deg r

(k)
0 , deg r

(k)
1

)
< B0,

where r(k) := r
(k)
0 + r

(k)
1 y; moreover, the sequence Ur is finite of length k + 1 if

r
(k)
1 = 0 and of length k + 2 if r

(k)
1 �= 0.

From Theorem 2, there are only finite and infinite, non-periodic expan-
sions possible. We push here a little further by imposing a condition about a
unique maximal element, which enables us to determine all possible shapes of
expansions.
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Theorem 3. Let

p(x, y) = y2 + b1y − b0 ∈ Fq [x, y]
deg b0 := B0 ∈ N, deg b1 := β1 + B0 (β1 ∈ Z)

r(0) := r
(0)
0 + r

(0)
1 y = (r̃0b0 + d0) + r

(0)
1 y ∈ R \ {0}

and generally (from the Scheicher-Thuswaldner algorithm) for k ≥ 1, let

r(k) := r
(k)
0 + r

(k)
1 y

=
(
r̃k−1b1 + r̃k−2b2 + · · ·+ r̃0bk + r

(0)
k

)
+ r

(k)
1 y

where r̃j = 0 if j < 0, bj = 0 if j > 2, b2 = 1, r
(0)
j = 0 if j > 1

= (r̃kb0 + dk) + r
(k)
1 y.

For 1 ≤ j ≤ 2, let

Sj =
{
deg (r̃j−1b1) − B0, deg (r̃j−2b2) − B0 , deg r

(0)
j − B0

}
.

For j ∈ N, let

mj = max(Sj) := max{x ; x ∈ Sj}.

For j ≥ 3, let

Sj = {mj−1 + β1, mj−2 − B0} .

To avoid the trivial case, assume that at least one of deg r
(0)
0 and deg r

(0)
1 is

≥ B0. For all j ≥ 1, assume that

mj > max(Sj − {mj}) .

Then r(0) has an infinite, non-periodic expansion if and only if β1 > 0.

Proof. Under the stated hypotheses, we get mk = deg r̃k (k ≥ 1).
To prove the sufficiency part, we assume that β1 > 0. From

r(k) = r
(k)
0 + r

(k)
1 y = (r̃kb0 + dk) + r

(k)
1 y (k ≥ 3),

we observe that mk = deg r̃k = deg r
(k)
0 − B0. Our strategy is to show that

the sequence (mk)k≥1 is strictly increasing, which implies that r(k) can neither
vanish nor become periodic, yielding an infinite, non-periodic expansion for
r = r(0).

Take a nontrivial r(0) := r
(0)
0 + r

(0)
1 y ∈ R \ {0} with r

(0)
0 �= 0, deg r

(0)
0 ≥ B0
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or deg r
(0)
1 ≥ B0. Recall that

r(0) = r
(0)
0 + r

(0)
1 y = (r̃0b0 + d0) + r

(0)
1 y (deg r̃0 = deg r

(0)
0 − B0)

r(1) = r
(1)
0 + r

(1)
1 y =

(
r̃0b1 + r

(0)
1

)
+ r

(1)
1 y

= (r̃1b0 + d1) + r
(1)
1 y

deg r̃0b1 =
(
deg r

(0)
0 − B0

)
+ (β1 + B0) = deg r

(0)
0 + β1.

That m1 is non-trivial, i.e. �= −∞, follows by noting that since

deg r̃1 = m1 = max
{

deg (r̃0b1) − B0, deg r
(0)
1 − B0

}
, and r

(0)
0 �= 0,

we get

deg r̃1 = m1 ≥ deg (r̃0b1) − B0 = deg r
(0)
0 + β1 − B0 ≥ 0.

From

r(2) = r
(2)
0 + r

(2)
1 y = (r̃1b1 + r̃0) + r

(2)
1 y

= (r̃2b0 + d2) + r
(2)
1 y

deg r̃1b1 = deg r̃1 + deg b1 = m1 + β1 + B0,

since
deg r̃2 = m2 = max {deg (r̃1b1) − B0, deg (r̃0) − B0} ,

we get
m2 ≥ deg (r̃1b1) − B0 = m1 + β1 > m1.

Next, from

r(3) = r
(3)
0 + r

(3)
1 y = (r̃2b1 + r̃1) + r

(3)
1 y

= (r̃3b0 + d3) + r
(3)
1 y

deg r̃2b1 = deg r̃2 + deg b1 = m2 + β1 + B0,

since

deg r̃3 = m3 = max{deg (r̃2b1) − B0, deg (r̃1) − B0}
= max{m2 + β1, m1 − B0} , (21)

we get
m3 ≥ deg (r̃2b1) − B0 = m2 + β1 > m2.
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Proceeding one more step further, from

r(4) = r
(4)
0 + r

(4)
1 y = (r̃3b1 + r̃2) + r

(4)
1 y

= (r̃4b0 + d4) + r
(4)
1 y

deg r̃3b1 = deg r̃3 + deg b1 = m3 + β1 + B0,

since

deg r̃4 = m4 = max{deg (r̃3b1) − B0, deg (r̃2) − B0}
= max{m3 + β1, m2 − B0} , (22)

we get

m4 ≥ deg (r̃3b1) − B0 = m3 + β1 > m3.

In general, using induction, for k ≥ 3, from

r(k) = r
(k)
0 + r

(k)
1 y = (r̃k−1b1 + r̃k−2) + r

(k)
1 y

= (r̃kb0 + dk) + r
(k)
1 y

deg r̃k−1b1 = deg r̃k−1 + deg b1 = mk−1 + β1 + B0,

since

deg r̃k = mk = max{mk−1 + β1, mk−2 − B0} , (23)

we get

mk ≥ mk−1 + β1 > mk−1,

as desired.
To prove the necessity part, assume that r(0) has an infinite, non-periodic

expansion, i.e., the sequence
(
r(0), r(1), r(2), . . .

)
is infinite and non-periodic.

By the result II of Scheicher-Thuswaldner mentioned in the introduction, β1 +
B0 := deg b1 > deg b0 := B0, which in turn yields that β1 > 0. �

Our final analysis shows that even in the simplest case of second degree
polynomial p(x, y) to determine all elements having finite expansions can be
tedious.

From

r(0) := r
(0)
0 + r

(0)
1 y = (r̃0b0 + d0) + r

(0)
1 y ∈ R \ {0}

and

r(1) =
(
r̃0b1 + r

(0)
1

)
+ r̃0y,
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there are two possible cases.
Case 1: r̃0b1 + r

(0)
1 = 0. Thus,

r(2) = r̃0 = r̃2b0 + d2, deg (r̃0) = deg (r̃2) + B0 (provided r̃2 �= 0)

r(3) = r̃2b1 + r̃2y = (r̃3b0 + d3) + r̃2y,

deg(r̃3b0) = deg(r̃2b1) = deg(r̃0) + β1 (provided r̃2 �= 0)

r(4) = (r̃3b1 + r̃2) + r̃3y, deg(r̃3b1) = deg(r̃0) + 2β1.

If r̃0 = 0, then r
(0)
1 = 0 = r(1) and so r(0) = d0 has a finite expansion of

length 1(A).
For r̃0 �= 0, if deg(r̃0) < B0, then r̃2 = 0 and so r(3) = 0 showing that

r(0) = (d2b0 + d0)+ (−d2b1)y has a finite expansion of length 3 (B), while
if deg(r̃0) ≥ B0, then the degrees of the constant terms in r(k) are strictly
increasing nonnegative integers, and so r(0) has an infinite non-periodic expan-
sion.
Case 2: r̃0b1 + r

(0)
1 �= 0. Thus,

r(1) = (r̃0b1 + r
(0)
1 ) + r̃0y = (r̃1b0 + d1) + r̃0y,

deg(r̃1b0) = deg(r̃0b1 + r
(0)
1 ) (provided r̃1 �= 0) (24)

r(2) = (r̃1b1 + r̃0) + r̃1y = (r̃2b0 + d2) + r̃1y,

deg (r̃2b0) = deg(r̃1b1 + r̃0) (provided r̃2 �= 0) (25)

r(3) = (r̃2b1 + r̃1) + r̃2y = (r̃3b0 + d3) + r̃2y,

deg(r̃3b0) = deg(r̃2b1 + r̃1) (provided r̃3 �= 0) (26)

r(4) = (r̃3b1 + r̃2) + r̃3y = (r̃4b0 + d4) + r̃3y,

deg(r̃4b0) = deg(r̃3b1 + r̃2) (provided r̃4 �= 0). (27)

• If deg r
(0)
1 > deg(r̃0b1), then (24) gives

deg(r̃1b0) = deg(r(0)
1 ) > deg(r̃0b1), i.e., deg(r̃1) > deg(r̃0) + β1,

which in turn, (25) gives

deg (r̃2b0) = deg(r̃1b1), i.e., deg(r̃2) > deg(r̃0) + 2β1.

Continuing in the same manner, we see that the degrees of the constant terms
in r(k) are strictly increasing integers, and so r(0) has an infinite non-periodic
expansion.

• If deg r
(0)
1 < deg(r̃0b1), then (24) gives

deg(r̃1b0) = deg(r̃0b1) > deg r
(0)
1 , i.e., deg(r̃1) = deg(r̃0) + β1,
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which in turn, (25) gives

deg (r̃2b0) = deg(r̃1b1), i.e., deg(r̃2) = deg(r̃0) + 2β1.

Continuing in the same manner, we see that the degrees of the constant terms
in r(k) are strictly increasing integers, and so r(0) has an infinite non-periodic
expansion.

The preceding discussion shows that for r(0) to have a finite expansion, we
must have

deg r
(0)
1 = deg(r̃0b1) = deg(r̃0) + B1. (28)

Note that if r̃0 = 0, then the case defining condition indicates that r
(0)
1 �= 0,

and so deg r
(0)
1 > deg(r̃0b1), and the above analysis shows that r(0) has an

infinite non-periodic expansion. Henceforth, we assume that r̃0 �= 0. Letting
D := deg(r̃0b1 + r

(0)
1 ) ≥ 0.

◦ If D < B0, then (24) gives r̃1 = 0 and so

r(1) = (r̃0b1 + r
(0)
1 ) + r̃0y = d1 + r̃0y, deg d1 = deg(r̃0b1 + r

(0)
1 ) = D

r(2) = r̃0 = r̃2b0 + d2, deg (r̃2b0) = deg r̃0 (provided r̃2 �= 0)

r(3) = r̃2b1 + r̃2y = (r̃3b0 + d3) + r̃2y, deg(r̃3b0) = deg(r̃2b1) (provided r̃3 �= 0)

r(4) = (r̃3b1 + r̃2) + r̃3y = (r̃4b0 + d4) + r̃3y, deg(r̃4b0) = deg(r̃3b1 + r̃2)
(provided r̃4 �= 0).

If deg r̃0 < B0, then r̃2 = 0 and so r(3) = 0, i.e., r(0) = (d2b0+d0)+(d1−d2b1)y
has a finite expansion of length 3 (C). If deg r̃0 ≥ B0, then r̃2 �= 0 and
so deg r̃3 = deg(r̃2) + β1. Continuing in the same manner, we get deg r̃4 =
deg(r̃3)+ β1 = deg(r̃2)+ 2β1, i.e., the degrees of the constant terms in r(k) are
strictly increasing integers, and so r(0) has an infinite non-periodic expansion.

◦ If D ≥ B0, then (24) gives r̃1 �= 0 and so

r(1) = (r̃0b1 + r
(0)
1 ) + r̃0y = (r̃1b0 + d1) + r̃0y, deg(r̃1b0) = deg(r̃0b1 + r

(0)
1 ) = D.

Proceeding to the next step, from

r(2) = (r̃1b1 + r̃0) + r̃1y = (r̃2b0 + d2) + r̃1y,

using the same arguments as above, we see that for a finite expansion, we must
have deg(r̃1b1) = deg r̃0, and together with (28), we must have

deg r
(0)
1 = deg(r̃0) + B1 = deg(r̃1) + 2B1,

and if the procedure can be continued, then deg r
(0)
1 = deg(r̃k) + (k + 1)B1 for

each k ∈ N. Since deg r
(0)
1 is fixed, for a finite expansion to occur this cannot be

continued indefinitely, and so one of the possibilities (A), (B), (C) must occur
for some index k, i.e., we have:
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Theorem 4. Let p(x, y) = y2 + b1y − b0 ∈ Fq[x, y]. Then r(0) := r
(0)
0 + r

(0)
1 y ∈

R\ {0} has a finite expansion if and only if there is k ∈ N for which r(k) takes
one of the following three forms

r(k) = dk, r(k) = (dk+2b0+dk)+(−dk+2b1)y, r(k) =(dk+2b0+dk)+(dk+1−dk+2b1)y,

where dk, dk+1, dk+2 ∈ N .

In particular, for the first cycle as elaborated above, finite expansions oc-
cur if and only if the starting element takes one of the following three forms
(corresponding to the forms stated in (A), (B), (C), respectively)

r(0) = d0, r
(0) = (d2b0 + d0) + (−d2b1)y, r(0) = (d2b0 + d0) + (d1 − d2b1)y,

where d0, d1, d2 ∈ N .
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