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Abstract

Let p(x,y) = y* + biy — bo € Fy[z,y], where F, is a finite field of
q elements; bi,by € Fq[z] and let R := Fy[z,y]/ (p(z,y)). A Scheicher-
Thuswaldner algorithm enables us to represent each element of R through
a digit system. All possible representations of elements in R are deter-
mined when degbi < degbo. As for the case degbi > degbo, the same
analysis is carried out subject to an assumption on the existence of a
unique maximal term.

1 Introduction

In [2], Scheicher and Thuswaldner, devised a digit system for elements in a
polynomial ring of two indeterminates detailed as follows: let F, be a finite
field of ¢ elements, and

1

p(,y) =y" + b1y + -4 by — bo € Flz, 1],

where b; € Fy[z] and degby > 0. Let
N :={g € Fylz]: degg < degbo}
R :=Fylz,y]/ p(z,y) = {co+ a1y + + o1y ' 1 ¢; €Fyla]}.
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Then each r € R\ {0} is uniquely represented as
r=ro iy 4+ ray" T 1y € Fylal. (1)

We say that » € R \ {0} has a finite y-adic representation if it admits a finite
representation of the form

r=do+diy+ - +dpy", (2)

with all the d; € N" and h € Ny := NU {0}. The polynomials d; are called the
digits of r. If each r € R\ {0} has a unique finite y-adic representation (2),
then p(x,y) is referred to as a digit system polynomial (DS-polynomial) with y
being the base and N being the digit set.

In order to determine those p(x, y) which are DS-polynomials, Scheicher and
Thuswaldner make use of the following algorithm. Given a general element as
in (1), i.e.,

r=r0 = 7’(()0) + rgo)y +--+ T(O)ly"_l € R\ {0},

n—

by the division algorithm there exist unique dy € A" and 7 := [7‘(()0) / bo} € F,[z]
such that

7 = fobo + do with deg o < degr®. (3)
Using
b
gozbl—Fbe"'"""bnyn_la (4)
we define
0) _ ¢
7,(1) (:: 7,(()1) + Tgl)y 44 T,(llllyn_l) = TTO (5)
= (7’~0b1 + 7’50)) + (fon + 7’§0)) U (fob" * T’(P)) g
so that
M = Fobip1 + 7’1@1 (0<i<n-—1)

Similarly, there exist unique d; € N and 7 = [r(()l) / bo} € Fy[z] such that

Tob1 + Tgo) = 7‘(()1) = T1bo + d;.

Continuing in the same manner, for £ > 1, we define

(k=1) _ ¢
ey g e ST



156 Expansions of elements

so that, fori =0,1,...,n — 1, we have
Tgk) = Tk—1biy1 + 7‘5{7_}1) (7)

=Tg—1biy1 + Tr—2biyo + -+ Tobirr + ng)k-

In particular, there exist unique d € N and 74, € Fy[z] such that

Tr—1b1 + Tr—2ba + - - - + Toby + r,(f) = T(()k) = 7bo + d, (8)

where .

P = |6 /bo) 9)
and 7 = 0if j <0, bj =0if j >n, b, =1, 7" = 0if j > n — 1. The y-adic
representation of r is thus of the form

r=r" =dy+diy+-+dp_1y" "t +yFr®, (10)

If there exists k € N such that #(*¥) = 0, then (10) yields a finite y-adic repre-
sentation for r of length k. If there are indices j < k such that 7(/) = () then
(10) yields an ultimately periodic representation for r with period k — j.

The two main results of Scheicher-Thuswaldner are

I. p(z,y) is a DS-polynomial if and only if max;—1,_,—1degb; < degby ;
IL. for each r € R\ {0}, the sequence U = (r =@ ) 7+ ) is ulti-
mately periodic if and only if max;—; .. ,—1 degb; < degby.

We are interedted here in investigating what kind of expansions are possible in
the simplest case when n = 2.
Throughout the rest of the paper, let

p(x,y) = y* + by — bo € Fylz, ]
with
By :=degbg >0, By :=degby =01+ By (61 € Z).
Here,
R :=Fqlz,y]/ (p(z,y)) = {co + 1y 5 ¢; € Fylz]}.

Take any starting element 7 := r(®) € R\ {0}, and write it using Scheicher-
Thuswaldner algorithm steps (7) and (8) recursively, we get

r@ = 4 0y = (Fobo + do) + |y (11)
r) = 7’(()1) + Tgl)y = (Fob1 + Tgo)) + 7oy = (F1bo + d1) + Toy (12)
r@ = Py = (Faby + 7o) + Fay = (Fabo + d) + Fay (13)

r®) = )t By — (b 4 Fra) + Froay = (Fabo + di) + Frory (k> 2).
(14)
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For each of presentation, let ¢, = (r =r© r) r2 ) The two separate
cases, B; < By and By > By, are analyzed in Sections 2 and 3, respectively.

2 The case B; < By

By the two main results of Scheicher-Thuswaldner, each element in R \ {0}
has an ultimately periodic expansion, which also includes the case of finite
expansions. We now determine all possible expansions of elements in R \ {0}.
Note also that in this case, 31 < 0.

There is a trivial case when deg 7'((]0) < By and deg 7‘%0) < By, which from

the construction step (6) clearly gives (" = do, r@ = r{” = d;, r@ =0,
and so
U, = (7'(0), 7'(1), r?) = 0,0,.. )

is a finite sequence of length < 2. Furthermore, if 7’%0) # 0, then the sequence
U, has length 2, while if 7‘%0) = 0, the sequence is of length 1.

For the rest of this section, we assume deg 7'((]0) > By or deg 7‘%0) > Bp.

From the relation (12), we treat separately two cases: deg 7’((]1) < By and
degr! > B

27Ty " = Do-
Case 1. deg 7’((]1) = deg (fobl + 7’%0)) < By.

Then 7 = 0 and r®) = 7, with deg 7’((]2) = deg 7o = deg 7’((]0) — By.

If 7o = 0, then () =0, and so r(©) has a finite expansion of length 2.

If 7p # 0, there are two subcases.

Subcase 1.1: deg 7y < By. We have r(?) = 7y = ds, and (6) yields r®) =0,
i.e., 7(9) has a finite expansion of length 3.

Subcase 1.2: deg 7y > By. From (13), we have

7‘(2)27’~0=7’~2b0+d27&0

with
7o # 0, degfy = degiy — By = degr(()o) — 2By. (15)

From (14), we have
r®) = aby + Fay = (Fabo + ds) + Fay # 0
with
deg r$?) = degyby = degrl” + By — By, degis = degrl” + 31 — 2B,. (16)
From (14), we have

r®) = (F3by + 72) + Fay = (Fabo + da) + F3y. (17)
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Consider now the two possibilities 81 = 0 and 31 # 0.

@ If 84 = 0, using (16) and (15), we get degrszb; = degr(()o) — By >

deg 7’((]0) — 2By = deg 79, and so

deg 7’((]4) = deg 73by = deg 7’((]0) — By, degry = degrsb; —degby = deg 7’((]0) —2By.
Continuing in the same manner, we obtain

r®) = (B By — (b 4 Frlg) + Fro1y

with

deg r(()k) =deg 7’((]0) — By, degty = deg 7’((]0) —2By (k> 2).
Since r(()k) and 7, are polynomials over a finite field of fixed degree, there must
exist two integers ji,j2 with 2 < j; < jo such that U = (2 This implies
7 has a periodic, non-finite, expansion with period jo — ji.

@ If 3; < 0 then 7 is of the same shape as in (17), but using (16) and
(15), we get
S (0) _ s () _
deg 7301 = degry’ + 2061 — By, deg7y =degry 2B,.

There are three possibilities depending on deg 73b; and deg r5.

o degrsb; > degts (i.e., deg 7’((]0)4—261—30 > deg 7’((]0)—230 < Bp+206; >
0). The relations (17) and (16) give then

deg 7’((]4) = deg 73b; = deg 7’(()0) + 261 — By,

deg 7y = deg 7’(()0) + 2831 — 2By = deg 73 + 1. (18)
From the relation (14),

r®) = (74by + 73) + Fay = (Fsbo + ds) + Fay, (19)
using (18), we get
deg 7’((]5) = deg74b1 = deg 7’((]0) + 361 — By, degrs = deg 7’((]0) + 361 — 2By.
Continuing in the same manner, for +(¥) = r(()k) + r%k)y, we have

deg r(()k) = deg 7’((]0) + (k—2)p1 — By (k>4).

Thus, ¥} = 0 for some k > 5, observing that 7 # 0, i.e., (9 has a
finite expansion of length k > 5.
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o degrsb; < degts (i.e., deg 7’((]0)4—261—30 < deg 7’((]0)—230 < Bp+2061 <
0). Then (17) and (16) give

deg 7’((]4) = deg 79 = deg 7’((]0) — 2By,
deg 7y = degro — By = deg 7’((]0) — 3By =degrs — 1 — By.
Using the same shape of r(®) as in (19), since deg 74b; = deg 3, we get
deg 7’((]5) < deg 7’((]0) + 1 — 2By, degrs < deg 7’((]0) + 61 — 3Bg.
Using (14), from r(®) = (75by + 74) + 75y = (Fsbo + dg) + 5y, since
deg 75b1 < deg 7’(()0) + 2061 — 2By < deg 7’((]0) — 3By = deg Ty,
we see that
deg 7’((]6) = degry = deg 7’((]0) — 3By, degrg = deg 7’((]0) —4B.

Continuing in the same manner, from (") = (7gb, + 75) + 76y = (Frbo +
d7) + Tey, we get

deg 7’((]7) < deg 7’((]0) + 1 — 3By, degr7 < deg 7’((]0) + 61 — 4By,
and from r®) = (77by + 76) + 77y = (Fgbo + dg) + 77y, we get
deg 7’((]8) =deg 7’((]0) — 4By, degtg =deg 7’((]0) — 5By.
In general, for k > 2, we have
deg 7‘(()%) = deg 7’((]0) —kBy — — (k — o0)
degr* ) < degr(”) + 1 — kBy — —o0 (k — 00).

Thus, there must exist k& > 5 such that r*) = 0, noting that r*) £ 0,
i.e., 7(9 has a finite expansion of length k > 5.

o degisby = degiy (ie., degr(” + 28 — By = degr(?) — 2By <= 28 =
—Bo).
Then (17) and (16) give
deg 7’((]4) < deg 7’(()0) + 261 — By, degty < deg 7’(()0) +206; —2By.  (20)

Using the same shape of #(®) as in (19), since

deg 74b1 < deg 7’((]0) + 361 — By = deg 3
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we see that

deg 7’((]5) < deg 7’((]0) + 301 — By, degrs < deg 7’((]0) + 3061 — 2By.
Using (14), from 7 = (F5by + 74) + 75y = (f6bo + dg) + 75y, since
deg 75b1 < deg 7’((]0) + 431 — By, together with (20) we get

deg 7’((]6) < deg 7’(()0) + 406, — By, degrg < deg 7’(()0) + 481 — 2Byg.
Continuing in the same manner, we have for k > 4

deo r® < deg _ _ _
gry <degry’ +(k—2)B1 — By — —o0  (k— 00),

and so there exists k > 5 such that *) = 0, noting that r® # 0, i.e.,
7 has a finite expansion of length k > 5.

Summarizing the Case 1, we see that (?) always has a finite expansion, except
only in the case degry > By, 1 = 0, where it has a non-finite, ultimately
periodic expansion.

Case 2. deg 7’((]1) = deg (fobl + 7{0)) > By.
Then (12) gives 71 # 0, and we have two subcases depending upon whether
7o = 0.

Subcase 2.1: 7y = 0 (<= deg 7'((]0) < By).
The relation (12) gives r = 7’%0) = 71bg + d1, and so deg 71 = deg 7’%0) — By.
From (13), we have r@ = b + 71y = (T2bo + d2) + 71y # 0 and so

deg 7’((]2) =deg71b; = deg 7’%0) + (1, degry = deg 7’%0) + 1 — Bo.

@ If B; =0, from (14), we get ) = (7oby +71) + Foy = (F3bo +d3) + Ty, with

deg 7’((]3) = deg 79by = deg 7‘%0), deg 73 = deg 7’%0) — By.

From (14) again, we get 7 = (73by + 72) + 73y = (Fabo + d4) + 73y, with

deg 73by = deg 7’%0) and so

deg 7’((]4) = deg 73by = deg 7‘%0), deg 74 = deg 7’%0) — By.

Continuing in the same manner, for r(*) = r((]k) + 71y, we have

degri?) = deg ("), degiy_1 = degr”) — By (k> 2).

Since r((]k), Tr—1 both € F,[z], there are indexes 1 < j; < ja such that rn) =

r2) ie., (%) has a non-finite ultimately periodic expansion with period j,— ;.
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@ If B; < 0, using the same shape of 7(3) as in (14) we have deg7ob; =
deg 7’%0) + 201 and deg 7, = deg 7’%0) — By. Checking three separate possibilities

deg 7’%0) + 2061 > deg 7’%0) — By, deg 7’%0) + 201 < deg 7’%0) — By,

deg 7’%0) + 201 = deg 7’%0) — By,

using the same analysis as Subcase 1.2 (with 8; < 0), we arrive at the conclusion
that 7(©) has a finite expansion.

Subcase 2.2. 7y #£ 0.
Then (11) yields deg 7’((]0) = deg Tobo, and so degroby = deg 7’((]0) + (1. Taking
from (12), i.e., 7V = (Foby + 7’%0)) + 7oy into account, we need to treat three
possilé)i)lities deg 7’(()0) + 01 > deg 7‘%0), deg 7’((]0) + 51 < deg 7’%0) and deg 7’(()0) +51 =
deg r{”).

Possibility 1: deg 7’((]0) + 01 > deg 7‘%0). From (12) we have
deg 7’((]1) = deg 7ob; = deg 7’((]0) + p1, degr = deg 7’((]0) + 61 — Byp.
@ If $; = 0, then proceeding as in Subcase 1.2 (with 8; = 0), we have
deg r(()k) =deg 7‘(()0), deg 7, = deg 7’((]0) — By (k>1),

and so 7(®) has a non-finite, periodic expansion.
@ If 5 < 0, then proceeding as in Subcase 1.2 (with 31 < 0), we arrive at the
conclusion that 7(9) has a finite expansion.

Possibility 2: deg 7'((]0) + 31 < deg 7’%0). From (12) we have

0), deg 71 = deg 7’%0) — Bp.

deg 7’((]1) = deg 7‘%
® If g1 = 0, from (13), 7® = (F1by + 7o) + F1y = (Fabo + do) + F1y #
0, we see that degri1b; = deg 7‘%0), deg 7y = deg 7’((]0) — By. By assumption,
degr(()o) + 01 < degrgo) and 31 = 0, we get degr(()o) — By < degrgo) and
deg 7’((]2) = deg71b; = deg 7‘%0), deg 7y = deg 7’%0) — By. From (14), r®) =

r((]k) + r%k)y = (Fk—1b1 + Tr—2) + 71y, and we similarly obtain

deg r(()k) = deg 7‘%0), deg 7, = deg 7’%0) — By (k>1).

Using the same analysis as in Subcase 1.2 (with 5, = 0), we come to the
conclusion that 7(9) has a non-finite, periodic expansion.

@ If 81 <0, then from (12), we get deg71b1 = deg 7’%0)4—61, deg 7o = deg 7’((]0)—
By. Treating three possible cases

deg 7’%0)4—61 > deg r((]o)—Bo, deg 7’%0)4—61 < deg r((]o)—Bo, deg 7’%0)4—61 =deg 7‘(()0)—]30
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and using the same analysis as in Subcase 1.2 (with 8; < 0), we conclude that
7 has a finite expansion.
Possibility 3: deg 7’((]0) + p1 = deg 7'%0). From (12), we have

deg 7’((]1) < deg 7’((]0) + (1, degr < deg 7’((]0) + (1 — By.

@ If $; = 0, then an analysis similar to Subcase 1.2 (with 8; = 0) shows that
deg r(()k) and deg 7, (k > 1) are bounded, and so either both are of constant val-
ues from certain point onward resulting in a non-finite but ultimately periodic
expansion, or both are decreasing over certain subsequence resulting in a finite
expansion. Example 1 and Example 2 following the statement of Theorem 1
illustrate that both of these possible conclusions do indeed exist.

@ If 51 <0, then (13) gives deg 71b; < deg 7’((]0) + 201, degry = deg 7’((]0) — Bp.
Treating the three possible cases

deg 7’((]0) + 201 > deg 7’((]0) — By,

deg 7’((]0) + 201 < deg 7’((]0) — By,

deg 7’((]0) + 26 =deg 7’((]0) — By,

and using an analysis similar to that of Subcase 1.2 (with 51 < 0), we conclude
that 7(©) has a finite expansion.

Summarizing the findings in Case 2, we have
(a) if 7o = 0, B1 = 0, or 7o # 0, degri” + 81 > degrl®, By =0, or 7y #
0, deg 7’(()0) + (1 < deg 7‘%0), B1 = 0, then 7(® has a non-finite and ultimately
periodic expansion;
(b) if 7o #£ 0, deg 7’((]0) + 1 = deg 7‘%0), B = 0, then (9 can have either a finite
or a non-finite but periodic expansion;
(c¢) in all other cases r(°) has a finite expansion.

Collecting all the results found, we have:

Theorem 1. Let p(z,y) = y* + b1y — by € F,lz,y] with
By := deg bo >0, Bp:= deg by =061+ By with (1 <0,

and let r:= 10 € R\ {0} := {co + c1y ; ¢; € Fy[z]}\ {0}.

(i) If B1 < 0, then ) always has a finite expansion.

(i) If 1 = 0, then ) always has a non-finite, ultimately periodic expan-
sion except only when 7o # 0, deg 7‘((]0)4—61 = deg 7‘%0), 01 = 0 where both finite
and non-finite expansions can occur.

We end this section by giving two examples exemplifying the point made
in (b) above.
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Example 1. Let p(z,y) = v* + vy — 2 € F3[z,y] with by = by = z and
BOZIZO—Fl:Bl,ﬁl:O. Take

P = 7'((]0) + rgo)y = (2* + 2) + (22% + 2)y.
From algorithm steps (11) - (14), we have

rO = (z+ Do+ (222 +2)y ; 7o #£0, deg 7’(()0) + 31 =deg 7’%0) =2
rD =2z + (x4 1)y, r® =142y, r® =2 +® =y,
i.e., (9 has a finite expansion.
Example 2. Let p(z,y) = y* + 2y — v € F3[z,y] with By =1=0+1= B;

and 31 = 0. Take

PO = 7'((]0) + rgo)y =+ xy.

From algorithm steps (11) - (14), we have
rO =g 4ay ; Fo=1+#0, degr(()o) + 061 = degrgo) =1
D =2z 4y, +® = (2 +1)+2y, r® = Q20 +2) 42y =¥,

and so 7(®) has a non-finite, ultimately periodic expansion.

3 The case B; > By

This is the case investigated in [1]. The analysis in [1] yields
Theorem 2. Let

p(z,y) = 2 4+ by —by € F,lz,y], B1 := deg b1, By := deg bo.

If By > By > 0, then each v € R\ {0} := {co + c1y; ¢; € Fy[z]}\ {0} either has
a finite or an infinite but non-periodic Scheicher- Thuswaldner representations.

More precisely, r € R\ {0} has a finite expansion if and only if there exists
a non-negative integer k such that

max (deg r((]k), deg rgk)) < By,

where r*) = r((]k) + Tgk)y; moreover, the sequence U, is finite of length k + 1 if
r%k) =0 and of length k + 2 if r%k) #0.

From Theorem 2, there are only finite and infinite, non-periodic expan-
sions possible. We push here a little further by imposing a condition about a
unique maximal element, which enables us to determine all possible shapes of
expansions.
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Theorem 3. Let

ple,y) = y* + bry — by € Fylz,y]
degby := By € N, degby := (1 + By (61 S Z)

r© =0 4 20y = (Fobg + do) + 7{Vy € R\ {0}
and generally (from the Scheicher- Thuswaldner algorithm) for k > 1, let
Pk = r((]k) + r%k)y

= (fk_lbl + Fr_oby + -+ Fob + r,(f)) + 7y

where 75 =0 if j <0, b; =0ifj>2, by=1, 1V =0ifj > 1

J
= (Frbo + dg) + Tgk)y.

For1<j5<2, let
Sj = {deg (’Fj_lbl) — BQ, deg (’Fj_gbg) — B(), degrg-o) — Bo} .

For j e N, let
m; = max(S;) := max{z; z € S;}.
For j >3, let
Sj = {mj_l + (1, mj_o — BO} .

[V

To avoid the trivial case, assume that at least one of deg 7'((]0) and deg 7‘%0) ?
> By. For all j > 1, assume that

mj; > max (SJ — {mj}) .
Then r©) has an infinite, non-periodic expansion if and only if 1 > 0.

Proof. Under the stated hypotheses, we get my = deg 7, (k> 1).
To prove the sufficiency part, we assume that 3; > 0. From

r®) =8 By — (b + di) + iy (k= 3),

we observe that my = degr, = deg r(()k) — By. Our strategy is to show that

the sequence (my),~, is strictly increasing, which implies that 7(*) can neither

vanish nor become periodic, yielding an infinite, non-periodic expansion for
— (0)

r=r",

Take a nontrivial +(©) := r{) 4 (% € R\ {0} with r") # 0, degr{” > B,
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or deg 7’%0) > By. Recall that

r® = 7’(()0) + rgo)y = (Fobo + do) + rgo)y (deg 7o = deg 7’((]0) — By)
) = 7'((]1) + r%l)y = (fobl + r%‘”) + r%l)y
= (’Flbo + dl) + Tgl)y
deg 7ob1 = (degréo) — Bo) + (81 + Bp) = deg T((]o) + fi.

That mq is non-trivial, i.e. # —o0, follows by noting that since

deg 71 = m1 = max < deg (7ob1) — By, deg 9 — Byl and r{” #£0,
1 0

we get
deg 7‘~1 =m Z deg (’Fobl) — B() = deg 7‘(()0) + 61 — B() Z 0.
From
r® = 4Py = (10 + 7o) + 7y
= (7‘~2b0 + dg) + T%Q)y
deg71by = deg 71 + degby = my + (1 + Bo,
since
deg 7’~2 = Mo = mMax {deg (’Flbl) — BQ, deg (’Fo) — BO} y
we get
mo > deg (’Flbl) — By =m1 + (1 > my.
Next, from
r®) = 7'((]3) + r%g)y = (Foby +71) + r%g)y
= (Fabo + d3) + {7y
degoby = deg o + deg by = ms + (1 + By,
since
deg 73 = m3 = max {deg (72b1) — By, deg(71) — Bo}
= max {mg + 1, m1 — Bo}, (21)
we get

ms > deg (’ngl) — By =mo + 61 > ma.
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Proceeding one more step further, from

= 7'((]4) + r§4)y = (F3by + 72) + 7“%4)3/
= (Fybo + d4) + 7“%4)3/
deg 73by = deg 73 + deg by = ms3 + 1 + By,

since

deg 7y = my = max {deg (F3b1) — By, deg (2) — Bo}
= max {ms + 1, me2 — Bo}, (22)

we get
my > deg (73b1) — By = ms + 31 > ms.

In general, using induction, for k£ > 3, from

r® = 1Py = (F_ibr 4 Fr2) + 1Py

= (Frbo + dg) + r%k)y

deg Tr_1b1 = deg Tr_1+ deg b1 =mg_1 + 61 + Bo,

since
deg 7, = my = max{my_1+ 1, mr—2 — Bo}, (23)
we get
my > myg—1+ 51 > my_1,
as desired.

To prove the necessity part, assume that (%) has an infinite, non-periodic
expansion, i.e., the sequence (r(®,r() r2) ) is infinite and non-periodic.
By the result IT of Scheicher-Thuswaldner mentioned in the introduction, 81 +
By :=deg by > deg by := By, which in turn yields that 5, > 0. O

Our final analysis shows that even in the simplest case of second degree
polynomial p(z,y) to determine all elements having finite expansions can be
tedious.

From

r©) = 7'((]0) + rgo)y = (Fobo + do) + T%O)y e R\ {0}

and
7‘(1) = (’Fobl + Tgo)) + 7’~0y,
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there are two possible cases.
Case 1: 7pb; + 7‘%0) = 0. Thus,

72 = 7y = Fabg + da, deg (Fo) = deg (72) + By (provided 75 # 0)
r3) = Faby + oy = (73bo + d3) + Fay,

deg(r3bg) = deg(2by) = deg(7o) + 1 (provided 72 # 0)
) = (Fgby + 7o) + 73y, deg(fsb1) = deg(7o) + 201.

If 79 = 0, then 7‘%0) =0 =7 and so r(©) = d;, has a finite expansion of
length 1(A).

For 7y # 0, if deg(7o) < By, then 73 = 0 and so 7(3) = 0 showing that
70 = (dobg + do) + (—dzby )y has a finite expansion of length 3 (B), while
if deg(79) > By, then the degrees of the constant terms in (%) are strictly
increasing nonnegative integers, and so (%) has an infinite non-periodic expan-

sion.
Case 2: 7ob; + 7‘%0) # 0. Thus,

r) = (Foby + Tgo)) + 7oy = (71bo + d1) + Toy,

deg (i1 bo) = deg(7oby + r'”) (provided 7 # 0) (24)
7‘(2) = (7‘~1b1 + 7‘~0) + ry = (’ngo + dg) + 71y,

deg (’ngo) = deg(flbl + 7’~0) (provided T 75 O) (25)
r) = (Foby + 71) + 7oy = (F3bo + d3) + T2y,

deg(fgbo) = deg(fgbl + 7’~1) (provided T3 75 O) (26)
= (F3by + 72) + 73y = (F4bo + d4) + T3y,

deg(f4b0) = deg(fgbl + 7’~2) (provided T4 75 O) (27)

o If deg 7’%0) > deg(7pb1), then (24) gives
deg(71bg) = deg(rgo)) > deg(rob1), i.e., deg(f1) > deg(7g) + B,
which in turn, (25) gives
deg (Tobg) = deg(71b1), i.e., deg(r2) > deg(Fo) + 251 .

Continuing in the same manner, we see that the degrees of the constant terms
in 7(¥) are strictly increasing integers, and so 7(°) has an infinite non-periodic
expansion.

o If deg 7’%0) < deg(7ob1), then (24) gives

deg(71bg) = deg(7ob1) > deg 7‘%0), i.e., deg(r1) = deg(7o) + 1,
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which in turn, (25) gives
deg (Tobg) = deg(71b1), i.e., deg(r2) = deg(ro) + 231 .

Continuing in the same manner, we see that the degrees of the constant terms
in 7(¥) are strictly increasing integers, and so 7(°) has an infinite non-periodic
expansion.
The preceding discussion shows that for (%) to have a finite expansion, we
must have
deg 7’%0) = deg(7ob1) = deg(7g) + Bj. (28)

Note that if 79 = 0, then the case defining condition indicates that 7’%0) #0,

and so deg 7’%0) > deg(7b1), and the above analysis shows that r(®) has an

infinite non-periodic expansion. Henceforth, we assume that 7o # 0. Letting
D = deg(fobl + Tgo)) > 0.

o If D < By, then (24) gives 71 = 0 and so
7‘(1) = (~0b1 + Tgo)) + 7’~0y =d; + 7’~0y, deg dy = deg(fobl + Tgo)) =D
7‘(2) =79 =T2by + da, deg (fgb()) =deg 7y (provided T 75 O)
) = Foby + Foy = (3o + d3) + 72y, deg(7sby) = deg(7aby) (provided 75 # 0)
7‘(4) = (7‘~3b1 + 7‘~2) + T3y = (7‘~4b0 + d4) + 73, deg(ﬂlbo) = deg(fgbl + fg)

(provided 74 # 0).

If deg 7o < By, then 7 = 0 and so 7(3) = 0, i.e., 7(®) = (dobg+do) + (dy — daby )y
has a finite expansion of length 3 (C). If deg#y > By, then 73 # 0 and
so deg s = deg(f2) + B1. Continuing in the same manner, we get degry =
deg(73) + 1 = deg(ra) + 20, i.e., the degrees of the constant terms in r(¥) are

strictly increasing integers, and so 7(°) has an infinite non-periodic expansion.
o If D > By, then (24) gives 71 # 0 and so

7‘(1) = (’Fobl + Tgo)) + 7’~0y = (’Flbo + dl) + f()y, deg(r]bo) = deg(fobl + Tgo)) =D.
Proceeding to the next step, from
r? = (7101 + 7o) + 71y = (F2bo + d2) + T1y,

using the same arguments as above, we see that for a finite expansion, we must
have deg(71b1) = deg 7o, and together with (28), we must have

deg 7’%0) = deg(7o) + By = deg(71) + 2B,

and if the procedure can be continued, then deg 7’%0) = deg(7x) + (k+ 1)B; for
each k € N. Since deg 7’%0) is fixed, for a finite expansion to occur this cannot be
continued indefinitely, and so one of the possibilities (A), (B), (C) must occur
for some index k, i.e., we have:
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Theorem 4. Let p(z,y) = y*> + by —bo € Fy[z,y]. Then r(® := 7'((]0) —|—7‘§0)y €
R\ {0} has a finite expansion if and only if there is k € N for which r*) takes
one of the following three forms

r®) = dy,, r™ = (djp2bo+di)+(—di2b1)y, 7 = (di2bot+di)+(dis1—dir2b1)y,
where dy, diy1, dpso € N.

In particular, for the first cycle as elaborated above, finite expansions oc-
cur if and only if the starting element takes one of the following three forms
(corresponding to the forms stated in (A), (B), (C), respectively)

7‘(0) = dy, 7‘(0) = (dgb() + do) + (—dzbl)y, 7‘(0) = (dgb() + do) + (dl — dgbl)y,

where dy, dy,ds € N.
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