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Abstract

There is no arithmetic progression consisting of square terms and with
a square common difference. Alternatively, the diophantine equation
1 + x4 = 2y2 has no solution in positive integers. Consequently, the
diophantine equation 8x4 +1 = y2 has no positive integral solution other
than x = 1, y = 3, a clear indication that no balancing number other
that 1 is a perfect square.

1 Introduction

Balancing numbers and balancers, originally introduced by Behera and Panda
[1], are respectively natural numbers n and r satisfying the equation

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r).

This equation when simplified yields

n2 =
(n + r)(n + r + 1)

2
,

leading to the conclusion that a natural number n is a balancing number if
and only if n2 is a triangular number, or, equivalently, 8n2 + 1 is a perfect
square. Since 8 · 12 + 1 = 9, Panda [4] and Panda and Ray [5] accepted
as 1 as the first balancing number, though the definition for the balancing
numbers suggests that every balancing number must be greater than 1. The
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nth balancing number is denoted by Bn and is well known that the balancing
numbers satisfy the recurrence relation (also see [1])

Bn+1 = 6Bn − Bn−1, B1 = 1, B2 = 6.

The first fifteen balancing numbers are 1, 6, 35, 204, 1189, 6930, 40391, 1372105,
7997214, 46611179, 271669860, 1583407981, 9228778026, 53789260175 and ex-
cept the first one, none is a square.This leads to a natural question ”Is it
possible for any other balancing number to be a perfect square ?” The answer
to this question lies in the solvability of the diophantine equation 8x4 +1 = y2

in natural number with x > 1, which, in turn, depends on the solvability of
a problem on arithmetic progressions, consist of finding three distinct natural
numbers P, Q and R in arithmetic progression such that each of P, Q and R
and the common difference d = Q − P = R − Q are perfect squares.

2 Three perfect squares in arithmetic

progression

Let x, y and z be distinct natural numbers such that x2, y2 and z2 are in
arithmetic progression. Then x, y and z satisfy the Pythagorean-type equation

x2 + z2 = 2y2.

Observe that both x and z must be of the same parity. If both x and z are
even, then y must be even and hence, we can cancel the highest power of 2 that
is common to each of x2, y2 and z2. We can assume, both x and z are odd and
hence y is also odd; else,

x2 + z2 ≡ 2(mod 4)

and
2y2 ≡ 0(mod 4)

contradict
x2 + z2 = 2y2.

Since x, y and z are distinct, we may assume without loss of generality that
x < z. If d is the greatest common divisor of x and z then certainly, d divides
y and we can cancel d2 from both sides of the equation. Thus, we also assume
without loss of generality that x, y and z are pairwise coprime. Since both x
and z are odd, z+x

2
and z−x

2
are natural numbers and the diophantine equation

x2 + z2 = 2y2 reduces to the Pythagorean equation
(

z + x

2

)2

+
(

z − x

2

)2

= y2 .
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Since x and z are coprime, z + x and z − x are either coprime or their greatest
common divisor is 2. Thus, in the present case, z+x

2 and z−x
2 are coprime. Let

(A, B, C) be any arbitrary primitive Pythagorean triple, that is A, B and C
are pairwise coprime and A2 + B2 = C2. Assume that A > B. Then we have
z+x

2
= A, z−x

2
= B and y = C, implying that z = A+B, x = A−B and y = C

leading to
(A − B)2 + (A + B)2 = 2C2.

We also note here that if x2, y2 and z2 are in arithmetic progression then,
(kx)2, (ky)2 and (kz)2 are also in arithmetic progression for each natural num-
ber k.

From the above discussion, it is clear that using primitive Pythagorean
triples we can always generate three pairwise coprime perfect squares to form
arithmetic progressions. Conversely, if three perfect squares are in arithmetic
progression, we can always find a Pythagorean triple from these squares. Thus
if x2, y2 and z2 are in arithmetic progression, then x, y and z must be of the
same parity and taking

A =
z + x

2
, B =

z − x

2
, C = y

we have
A2 + B2 = C2.

3 Arithmetic progressions with square terms and

square common difference

Let x, y and z be distinct natural numbers such that x2, y2 and z2 are in arith-
metic progression with a perfect square common difference. We can assume
without loss of generality that x, y and z are pairwise coprime. This leads us
to consider the diophantine equation x2 + z2 = 2y2 such that the common
difference y2 − x2 = z2 − y2 is a perfect square. Let y be the smallest number
to satisfy this property. In view of the results of the last section, we have

x = A − B, y = C, z = A + B

where A, B and C are natural numbers forming a primitive Pythagorean triple.
It is well known that each primitive solution of the Pythagorean equation A2 +
B2 = C2 is of the form

A = a2 − b2, B = 2ab, C = a2 + b2

where a and b are two coprime natural numbers of opposite parity, see [2] and
[3, p.584]. We may assume without loss of generality that a > b. The common
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difference of the arithmetic progression takes the form

y2 − x2 = z2 − y2 = 2AB = 4ab(a2 − b2) = 4ab(a + b)(a − b).

Since a and b are coprime and of opposite parity, the numbers a, b, a + b and
a − b are also pairwise coprime and hence, all must be perfect squares. Thus,
there exist natural numbers u, v, p and q such that

a = u2, b = v2 , a + b = p2, a − b = q2,

leading to the simultaneous diophantine equation

u2 + v2 = p2, u2 − v2 = q2,

a clear indication that u2 − v2, u2, u2 + v2 are in arithmetic progression with
common difference v2. But in view of

u2 = a ≤ a2 < a2 + b2 = C < C2 = y2 ,

it follows that u < y, contradicting the assumption that y is the smallest num-
ber such that x2, y2 and z2 are in arithmetic progression with a perfect square
common difference. Hence, three squares cannot be in arithmetic progression
if their common difference is a square.

4 The diophantine equation x4 + 1 = 2y2

Our next objective is to show that no balancing number other than 1 is a
perfect square, or, equivalently, the diophantine equation 8x4 + 1 = y2 has no
positive integral solution except x = 1, y = 3. But before we do so, we need to
study the diophantine equation x4 + 1 = 2y2.

The diophantine equation x4 + 1 = 2y2 has the trivial solution in positive
integers x = y = 1. To take care of other solutions, we assume that x �= y.
Further, we observe that if x ≥ 2, then we have

4x2 ≤ x4 < x4 + 1 = 2y2

leading to x < y. We next convert x4 + 1 = 2y2 to a Pythagorean equation.
Adding 2x2 to both sides we get

(x2 + 1)2 = 2(x2 + y2) = (x + y)2 + (y − x)2.

Observe that if x4 + 1 = 2y2, then x is odd and hence y is also odd. Further,
if d is the greatest common divisor of x and y, then d2 divides 2y2 − x4 = 1,
implying that d = 1 and hence that x and y are coprime. Thus, we have the
equation (

x + y

2

)2

+
(

x − y

2

)2

=
(

x2 + 1
2

)2

.



G K Panda 135

It is also well known that if a and b are coprime, then a+ b and a− b are either
coprime or their greatest common divisor is 2. Since for the case at hand, x

and y are odd x+y
2

and y−x
2

are coprime. We claim that x+y
2

, y−x
2

and x2+1
2

are
pairwise coprime. Observe that if d divides x+y

2
and x2+1

2
then d2 must divide

(
x2 + 1

2

)2

−
(

x + y

2

)2

=
(

y − x

2

)2

and then x+y
2 and y−x

2 cannot be coprime. Thus, there exist coprime natural
numbers a and b of opposite parity with a > b such that the solution of the
equation (

x + y

2

)2

+
(

y − x

2

)2

=
(

x2 + 1
2

)2

is given by

x + y

2
= 2ab,

y − x

2
= a2 − b2,

x2 + 1
2

= a2 + b2

or
x + y

2
= a2 − b2,

y − x

2
= 2ab,

x2 + 1
2

= a2 + b2.

In either case, we have

y = a2 − b2 + 2ab, x = |a2 − b2 − 2ab|, x2 = 2(a2 + b2) − 1.

This gives
(a2 − b2 − 2ab)2 = 2(a2 + b2) − 1,

which, on simplification yields

(a2 + b2 − 1)2 = 4ab(a + b)(a − b).

Since a and b are coprime and of opposite parity, a + b and a − b are also
coprime, so that each of a, b, a + b and a − b are perfect squares. Thus, there
exist natural numbers u, v, p and q such that

a = u2, b = v2 , a + b = p2, a − b = q2

leading to
u2 + v2 = p2, u2 − v2 = q2,

implying that q2, u2 and p2 are in arithmetic progression with common differ-
ence v2. By virtue of the results of last section, this is impossible. Hence, the
diophantine equation x4 + 1 = 2y2 has no solution in positive integers other
than x = y = 1.
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5 The diophantine equation 8x2 + y2 = z2

To prove the impossibility of solution of the diophantine equation 8x4 +1 = y2

other than x = 1 and y = 3, we further need to study a similar type of
diophantine equation 8x2+y2 = z2 when both y and z are odd natural numbers.
The equation 8x2 + y2 = z2 generates balancing and Lucas-balancing numbers
[4, 5, 6] when y = 1.

The diophantine equation 8x2+y2 = z2 is also a variant of the Pythagorean
equation x2 + y2 = z2; however, the method of solution we present here does
not use Pythagorean triples. We assume without loss of generality that y and z
are coprime; else if d is the greatest common divisor of y and z then d2 divides
z2 − y2 and hence d2 divides x2; so d2 can be canceled from each of x2, y2 and
z2 and the equation 8x2 + y2 = z2 is reduced to another equation of the same
type.

We rewrite the equation 8x2 + y2 = z2 as z+y
2 · z−y

2 = 2x2. Since y and z

are both odd and coprime, z+y
2 and z−y

2 are also coprime. Hence, there exist
natural numbers u and v such that

z + y

2
= u2,

z − y

2
= 2v2

or
z + y

2
= 2v2,

z − y

2
= u2

leading to
z = u2 + 2v2, y = |u2 − 2v2|, x = uv

and we finally have

8u2v2 + (u2 − 2v2)2 = (u2 + 2v2)2.

Note that if (x, y, z) is a solution of 8x2 +y2 = z2 and k is any natural number,
then (kx, ky, kz) is a solution.

6 Perfect square balancing numbers and the dio-
phantine equation 8x4 + 1 = y2

We know that the first balancing number 1 is a square. As remarked in Section
1, there is no square balancing number in a visible distance. It is also well
known that a natural number x is a balancing number if and only if 8x2+1 is a
perfect square and hence, for any natural number x, x2 is a balancing number if
and only if 8x4+1 is a perfect square. This leads us to consider the diophantine
equation 8x4 + 1 = y2, which has the trivial solution x = 1, y = 3. We try
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for solutions with x > 1. In view of the results of last section, the solutions of
8x4 + 1 = y2 can be written as

x2 = uv, y = u2 + 2v2

such that |u2 − 2v2| = 1, where the numbers u and v are coprime. Thus, there
exist natural numbers a and b such that

u = a2, v = b2, |a4 − 2b4| = 1.

The equation a4 − 2b4 = 1 is equivalent to

(b4 + 1)2 = a4 + b8

which, clearly has no solutions in natural numbers [3, p.591] and if 2b4−a4 = 1
then we have 1 + a4 = 2b4 and by virtue of results of Section 4, this equation
has also no solution in natural numbers other than a = b = 1. But a = b = 1
corresponds to u = v = 1 and finally x = 1, y = 3. Thus the diophantine
equation 8x4 + 1 = y2 has the only solution x = 1 and y = 3. This suggests
that other than 1, no balancing number is a perfect square.
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