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Abstract

In this paper we study the structure and give bounds for the eigen-
values of the n×n matrix, whose ij entry is (i, j)α[i, j]β, where α, β ∈ R,
(i, j) is the greatest common divisor of i and j and [i, j] is the least com-
mon multiple of i and j. Currently, only O-estimates for the greatest
eigenvalue of this matrix can be found in the literature, and the asymp-
totic behaviour of the greatest and smallest eigenvalues is known in case
when α = β.

1 Introduction

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers, and let f be an
arithmetical function. Let (S)f denote the n× n matrix having f evaluated at
the greatest common divisor (xi, xj) of xi and xj as its ij entry. More formally,
let ((S)f )ij = f((xi, xj)). Analogously, let [S]f denote the n×n matrix having
f evaluated at the least common multiple [xi, xj] of xi and xj as its ij entry.
That is, ([S]f)ij = f([xi, xj]). The matrices (S)f and [S]f are referred to as
the GCD and LCM matrices on S associated with f .

The study of GCD and LCM matrices was initiated by H. J. S. Smith [19] in
1875, when he calculated det(S)f in case when S is factor-closed and det[S]f
in a more special case. Since Smith, numerous papers have been published
about GCD and LCM matrices. For general accounts, see e.g. [9, 18]. There
are also various generalizations of GCD and LCM matrices to be found in the
literature. The most important ones are the lattice-theoretic generalizations
into meet and join matrices, see e.g. [16].

Over the years some authors have studied number-theoretic matrices that
are neither GCD nor LCM matrices, but are very closely related to them. For
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example, Wintner [20] published results concerning the largest eigenvalue of
the n × n matrix having (

(i, j)
[i, j]

)α

as its ij entry and subsequently Lindqvist and Seip [17] investigated the asymp-
totic behavior of the smallest and largest eigenvalues of the same matrix. More
recently Hilberdink [10] as well as Berkes and Weber [5] have studied this same
topic from analytical perspective.

Also the norms of GCD, LCM and related matrices have been repeatedly
studied in the literature. Altinisik et al. [2] investigated the norms of reciprocal
LCM matrices, and later Altinisik [1] published a paper about the norms of
GCD related matrix. Haukkanen [6, 7, 8] studied the n × n matrix having

(i, j)r

[i, j]s
, r, s ∈ R,

as its ij entry and, among other things, gave O-estimates for the �p and max-
imum row and column sum norms of this matrix. In this paper we study
the same class of matrices, although we use a slightly different notation. Let
α, β ∈ R. Our goal here is to find bounds for the eigenvalues of the n × n
matrix having

(i, j)α[i, j]β

as its ij entry. In order to do this we use similar techniques as Ilmonen et al [15]
and Hong and Loewy [13]. One of the methods may be considered to originate
from Hong and Loewy [12]. It should be noted that not much is known about
the eigenvalues of GCD, LCM and related matrices. In addition to the articles
mentioned above there are only a few publications that provide information
about the eigenvalues (see e.g. [3, 11]).

2 Preliminaries

Let Aα,β
n denote the n × n matrix, whose ij entry is given by

(Aα,β
n )ij = (i, j)α[i, j]β, (1)

where α, β ∈ R. In addition, for every n ∈ Z+ we define the n × n matrix En

by

(En)ij =
{

1 if j | i
0 otherwise. (2)

The matrix En may be referred to as the incidence matrix of the set {1, 2, . . . , n}
with respect to the divisibility relation.



M. Mattila and P. Haukkanen 123

Next we define some important arithmetical functions that we need. First
of all, let Nα−β be the function such that Nα−β(k) = kα−β for all k ∈ Z+. In
addition, let Jα−β denote the arithmetical function with

Jα−β(k) = kα−β
∏
p | k

(
1 − 1

pα−β

)
(3)

for all k ∈ Z+. This function may be seen as a generalization of the Jordan
totient function, and it is easy to see that the function Jα−β can be written as

Jα−β = Nα−β ∗ μ, (4)

the Dirichlet convolution of Nα−β and the number-theoretic Möbius function.

Remark 1. If α − β > 0, then clearly Jα−β(k) > 0 for all k ∈ Z+.

Before we begin to analyze the eigenvalues of the matrix Aα,β
n we first need

to obtain suitable factorizations for it.

Proposition 1. Let Fn = diag(1, 2, . . . , n) and Dn = diag(d1, d2, . . . , dn),
where

di = Jα−β(i) = (Nα−β ∗ μ)(i). (5)

Then the matrix Aα,β
n can be written as

Aα,β
n = F β

n EnDnET
n F β

n . (6)

Proof. Since the ij element of the matrix EnDnET
n is

∑
k | (i,j)

Jα−β(k) =
∑

k | (i,j)
(Nα−β ∗ μ)(k) = [(Nα−β ∗ μ) ∗ ζ]((i, j))

= Nα−β((i, j)) = (i, j)α−β , (7)

the ij element of the matrix F β
n EnDnET

n F β
n is

iβ(i, j)α−βjβ = (i, j)α[i, j]β, (8)

which is also the ij element of Aα,β
n . �

Remark 2. By applying Proposition 1, it is easy to see that

det Aα,β
n = (n!)2β

n∏
k=1

Jα−β(k) = (n!)2β
n∏

k=1

(
Nα−β ∗ μ

)
(k). (9)

In case when α > β, we are able to use a different factorization presented
in the following proposition.
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Proposition 2. Suppose that α > β. Let Jα−β, Dn and Fn be as in Proposition
1, and let Bn denote the real n × n matrix with

(Bn)ij =
{ √

Jα−β(j) if j | i
0 otherwise.

(10)

Then the matrix Aα,β
n can be written as

Aα,β
n = (F β

n Bn)(F β
n Bn)T = (F β

n EnD
1
2
n )(F β

n EnD
1
2
n )T . (11)

Proof. First we observe that the ij element of BnBT
n is equal to

∑
k | (i,j)

Jα−β(k) =
∑

k | (i,j)
(Nα−β ∗ μ)(k) = [(Nα−β ∗ μ) ∗ ζ]((i, j))

= Nα−β((i, j)) = (i, j)α−β . (12)

Thus the ij element of (F β
n Bn)(F β

n Bn)T = F β
n (BnBT

n )F β
n is

iβ(i, j)α−βjβ = (i, j)α[i, j]β, (13)

which is also the ij element of the matrix Aα,β
n . Thus, we have proven the first

equality. The second equality follows from the fact that the matrix Bn can be
written as Bn = EnD

1
2
n . �

In order to obtain bounds for the eigenvalues of the matrix Aα,β
n we find

out the eigenvalues of the matrix ET
n En for different n ∈ Z+. The smallest

eigenvalue of this matrix is denoted by tn and the largest by Tn. Table 1 shows
the values of the constants tn and Tn for small values of n. The ij element of
the matrix ET

n En is in fact equal to

∣∣{k ∈ Z
+

∣∣ k ≤ n, i | k and j | k}∣∣ =
⌊

n

[i, j]

⌋
, (14)

the greatest integer that is less than or equal to n
[i,j]

. This same matrix is also
studied by Bege [4] when he considers it as an example.

As can be seen from Table 1, the sequences (tn)∞n=1 and (Tn)∞n=1 seem to
possess certain monotonic behavior. This encourages us to present the following
conjecture.

Conjecture 1. For every n ∈ Z+ we have

tn+1 ≤ tn and Tn ≤ Tn+1. (15)

Calculations show that this conjecture holds for n = 2, . . . , 100.
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n tn Tn n tn Tn n tn Tn

2 0.381966 2.61803 15 0.0616080 23.6243 28 0.0411874 47.1773
3 0.267949 3.73205 16 0.0616079 26.1117 29 0.0401315 47.7330
4 0.252762 5.78339 17 0.0591935 26.70841 30 0.0343360 51.4915
5 0.204371 6.60665 18 0.0584344 29.8007 31 0.0336797 52.0305
6 0.129425 9.21230 19 0.0562263 30.3787 32 0.0336797 54.6056
7 0.118823 9.92035 20 0.0550575 33.2123 33 0.0322295 55.7392
8 0.118764 12.2892 21 0.0505600 34, 4522 34 0.0306762 57.2482
9 0.116597 13.4520 22 0.0466545 36.0618 35 0.0295618 58.2226
10 0.0930874 15.4428 23 0.0452547 36.6470 36 0.0295298 62.7258
11 0.087262 16.113 24 0.0452214 41.0878 37 0.0289990 63.2500
12 0.087262 16.113 25 0.0451569 41.8465 38 0.0277260 64.7226
13 0.0791480 20.4160 26 0.0419049 43.3920 39 0.0267584 65.8548
14 0.0681283 22.1909 27 0.0419033 44.6343 40 0.0267526 69.2188

Table 1: The constants tn and Tn for n ≤ 40.

3 Estimations for the eigenvalues

First we assume that α > β. From Proposition 2, it follows that in this case
the matrix Aα,β

n is positive definite, and thus we are able to give a lower bound
for the smallest eigenvalue of Aα,β

n .

Theorem 1. Let α > β and let λn,α,β
1 denote the smallest eigenvalue of the

matrix Aα,β
n . Then

λn,α,β
1 ≥ tn · min

1≤i≤n
Jα−β(i) · min{1, n2β} > 0. (16)

Proof. By applying Proposition 2, we have

Aα,β
n = (F β

n EnD
1
2
n )(F β

n EnD
1
2
n )T . (17)

By applying Remarks 1 and 2 we deduce that detAα,β
n �= 0 and furthermore

that Aα,β
n is invertible. Thus, the matrices Aα,β

n and (Aα,β
n )−1 are real sym-

metric and positive definite and therefore the greatest eigenvalue of (Aα,β
n )−1

is also the inverse of the smallest eigenvalue of Aα,β
n . In addition, the great-

est eigenvalue of (Aα,β
n )−1 is equal to

∣∣∣∣∣∣(Aα,β
n )−1

∣∣∣∣∣∣
S

, the spectral norm of the
matrix (Aα,β

n )−1. Thus

λn,α,β
1 =

1
|||(Aα,β

n )−1|||S
=

1∣∣∣
∣∣∣
∣∣∣[(F β

n EnD
1
2
n )(F β

n EnD
1
2
n )T ]−1

∣∣∣
∣∣∣
∣∣∣
S

. (18)
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By applying the submultiplicativity of the spectral norm we obtain∣∣∣
∣∣∣
∣∣∣[(F β

n EnD
1
2
n )(F β

n EnD
1
2
n )T ]−1

∣∣∣
∣∣∣
∣∣∣
S

=
∣∣∣∣∣∣(F β

n )−1(ET
n )−1D−1

n E−1
n (F β

n )−1
∣∣∣∣∣∣

S
(19)

≤ ∣∣∣∣∣∣(F β
n )−1

∣∣∣∣∣∣2
S
· (∣∣∣∣∣∣E−1

n

∣∣∣∣∣∣
S
· ∣∣∣∣∣∣(E−1

n )T
∣∣∣∣∣∣

S

) · ∣∣∣∣∣∣D−1
n

∣∣∣∣∣∣
S

=
∣∣∣∣∣∣(F β

n )−1
∣∣∣∣∣∣2

S
· ∣∣∣∣∣∣(ET

n En)−1
∣∣∣∣∣∣

S
· ∣∣∣∣∣∣D−1

n

∣∣∣∣∣∣
S

.

Since Jα−β(i) > 0 for all i = 1, . . . , n we have

∣∣∣∣∣∣D−1
n

∣∣∣∣∣∣
S

=
∣∣∣∣
∣∣∣∣
∣∣∣∣diag

(
1

(Jα−β(1)
,

1
Jα−β(2)

, . . . ,
1

Jα−β(n)

)∣∣∣∣
∣∣∣∣
∣∣∣∣
S

= max
1≤i≤n

1
Jα−β(i)

=
1

min1≤i≤n Jα−β(i)
, (20)

and similarly

∣∣∣∣∣∣(F β
n )−1

∣∣∣∣∣∣2
S

=
∣∣∣∣
∣∣∣∣
∣∣∣∣diag

(
1
1β

,
1
2β

, . . . ,
1
nβ

)∣∣∣∣
∣∣∣∣
∣∣∣∣
2

S

= max
1≤i≤n

1
i2β

=
1

min1≤i≤n i2β
=

1
min{1, n2β} . (21)

For the spectral norm of the matrix (ET
n En)−1, we have

∣∣∣∣∣∣(ET
n En)−1

∣∣∣∣∣∣
S

=
1
tn

. (22)

Now by combining equations (20), (21) and (22) with (19), we obtain

λn,α,β
1 =

1∣∣∣
∣∣∣
∣∣∣[(F β

n EnD
1
2
n )(F β

n EnD
1
2
n )T ]−1

∣∣∣
∣∣∣
∣∣∣
S

≥ 1∣∣∣
∣∣∣
∣∣∣(F β

n )−1
∣∣∣
∣∣∣
∣∣∣2
S
· |||(ET

n En)−1|||S · ∣∣∣∣∣∣D−1
n

∣∣∣∣∣∣
S

= tn · min
1≤i≤n

Jα−β(i) · min{1, n2β}, (23)

which completes the proof. �

Remark 3. For α − β ≥ 1 we have min1≤i≤n Jα−β(i) = 1. In addition, if
β ≥ 0, then min{1, n2β} = 1 and we simply have

λn,α,β
1 ≥ tn. (24)

In particular, this holds for the so called power GCD matrix Aα,β
n in which

β = 0 and α > 1 and for the matrix A1,0
n , which is the usual GCD matrix of

the set {1, 2, . . . , n}.
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On the other hand, if β < 0, then min{1, n2β} = n2β and

λn,α,β
1 ≥ tn · n2β. (25)

For example, when considering the so called reciprocal matrix A1,−1
n , Theorem

1 yields this bound.

Example 1. Let n = 6, α = 2 and β = 1
2 . Then we have

A
2, 1

2
6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
√

2
√

3 2
√

5
√

6√
2 4

√
2

√
6 8

√
10 4

√
6√

3
√

6 9
√

3 2
√

3
√

15 9
√

6
2 8 2

√
3 32 2

√
5 8

√
3√

5
√

10
√

15 2
√

5 25
√

5
√

30√
6 4

√
6 9

√
6 8

√
3

√
30 36

√
6

⎤
⎥⎥⎥⎥⎥⎥⎦

, (26)

and by Theorem 1 and Remark 3 we have λ
6,2,12
1 ≥ t6 ≈ 0.129425. Direct

calculation shows that in fact λ
6,2,12
1 ≈ 0.459959.

Example 2. Let n = 5, α = −2 and β = −3. This time we have

A−2,−3
5 =

⎡
⎢⎢⎢⎢⎣

1 1
8

1
27

1
64

1
125

1
8

1
32

1
216

1
256

1
1000

1
27

1
216

1
243

1
1728

1
3375

1
64

1
256

1
1728

1
1024

1
8000

1
125

1
1000

1
3375

1
8000

1
7776

⎤
⎥⎥⎥⎥⎦ , (27)

min1≤i≤n J1(i) = 1 and min{1, 52·(−3)} = 1
15625

. Thus, by Theorem 1 we have

λ5,−2,−3
1 ≥ t5 · 1 · 1

15625
≈ 1.30797 · 10−5,

although a direct calculation gives λ5,−2,−3
1 ≈ 6.45967 · 10−5.

In Theorem 1 we assume that α > β. Next we are going to prove a more
robust theorem which can be used in any circumstances, but as a downside it
also gives a bit more broad bounds for the eigenvalues of the matrix Aα,β

n .

Theorem 2. Every eigenvalue of the matrix Aα,β
n lies in the union of the real

intervals

n⋃
k=1

[
2kα+β−Tn ·max{1, n2β}· max

1≤i≤n
|Jα−β(i)| , Tn·max{1, n2β}· max

1≤i≤n
|Jα−β(i)|

]
.

(28)
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Proof. Let the matrices En, Dn and Fn be as above. In addition, we denote

Λn = |Dn| 12 = diag
(√

|Jα−β(1)|,
√
|Jα−β(2)|, . . . ,

√
|Jα−β(n)|

)
. (29)

By applying Proposition 1, we obtain

Aα,β
n = F β

n EnDnET
n F β

n , (30)

and next we observe that

0n×n ≤ Aα,β
n ≤ F β

n En|Dn|ET
n F β

n = F β
n EnΛnΛT

nET
n (F β

n )T = (F β
n EnΛn)(F β

n EnΛn)T ,
(31)

where ≤ is understood componentwise. By Theorem 8.2.12 in [14], we know
that now every eigenvalue of Aα,β

n lies in the region
n⋃

k=1

{
z ∈ C

∣∣∣ |z − kα+β | ≤ ρ((F β
n EnΛn)(F β

n EnΛn)T ) − kα+β
}
, (32)

where ρ((F β
n EnΛn)(F β

n EnΛn)T ) is the spectral radius of the matrix
(F β

n EnΛn)(F β
n EnΛn)T . Since the matrix (F β

n EnΛn)(F β
n EnΛn)T is clearly pos-

itive semidefinite, we have

ρ((F β
n EnΛn)(F β

n EnΛn)T ) =
∣∣∣∣∣∣(F β

n EnΛn)(F β
n EnΛn)T

∣∣∣∣∣∣
S

≤ ∣∣∣∣∣∣F β
∣∣∣∣∣∣2

S
· ∣∣∣∣∣∣ET

n En

∣∣∣∣∣∣
S
· ∣∣∣∣∣∣ΛnΛT

n

∣∣∣∣∣∣
S

(33)

= Tn · max
1≤i≤n

i2β · max
1≤i≤n

|Jα−β(i)|
= Tn · max{1, n2β} · max

1≤i≤n
|Jα−β(i)|. (34)

Finally, the matrix Aα,β
n is real and symmetric, which means that all its eigen-

values are real. So we have proven that every eigenvalue of Aα,β
n lies in the

region
n⋃

k=1

{
z ∈ R

∣∣∣ |z − kα+β| ≤ Tn · max{1, n2β} · max
1≤i≤n

|Jα−β(i)| − kα+β
}
. (35)

The claim now follows easily by removing the absolute value function. �

Remark 4. Theorem 2 is not very useful when β > 0, since in this case the
term max{1, n2β} often becomes large.

Example 3. Let n = 4, α = −1 and β = −1. Then we obtain

A−1,−1
4 =

⎡
⎢⎢⎣

1 1
2

1
3

1
4

1
2

1
4

1
6

1
8

1
3

1
6

1
9

1
12

1
4

1
8

1
12

1
16

⎤
⎥⎥⎦ . (36)
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Now max{1, 42·(−1)} = 1, max1≤i≤4 |J0(i)| = |J0(1)| = 1 and thus by Theorem
2 we know that the eigenvalues of A−1,−1

4 lie in the union

[−3.78, 5.78]∪ [−5.28, 5.78]∪ [−5.56, 5.78]∪ [−5.65, 5.78] = [−5.65, 5.78]. (37)

Direct calculation shows that this really is the case, since A−1,−1
4 has 0 as an

eigenvalue of multiplicity 3 and the only nonzero eigenvalue is 1.42361.

The following corollary is a direct consequece of Theorem 2.

Corollary 1. If λ is an eigenvalue of the matrix Aα,β
n , then

|λ| ≤ Tn · max{1, n2β} · max
1≤i≤n

|Jα−β(i)|. (38)

Acknowledgement. We thank Jesse Railo for Scilab calculations concerning
Conjecture 1.
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