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Abstract

In this paper we study the structure and give bounds for the eigen-
values of the n x n matrix, whose ij entry is (i, j)*[i, j]°, where o, 8 € R,
(4,7) is the greatest common divisor of ¢ and j and [¢, j] is the least com-
mon multiple of ¢ and j. Currently, only O-estimates for the greatest
eigenvalue of this matrix can be found in the literature, and the asymp-
totic behaviour of the greatest and smallest eigenvalues is known in case
when a = 3.

1 Introduction

Let S = {z1,22,...,2,} be a set of distinct positive integers, and let f be an
arithmetical function. Let (S); denote the n x n matrix having f evaluated at
the greatest common divisor (x;, z;) of x; and x; as its ij entry. More formally,
let ((S)s)ij = f((zi,x;)). Analogously, let [S]; denote the n x n matrix having
f evaluated at the least common multiple [z;, z;] of z; and z; as its ij entry.
That is, ([S]f)i; = f([zi,x;]). The matrices (S); and [S]; are referred to as
the GCD and LCM matrices on S associated with f.

The study of GCD and LCM matrices was initiated by H. J. S. Smith [19] in
1875, when he calculated det(S); in case when S is factor-closed and det[S];
in a more special case. Since Smith, numerous papers have been published
about GCD and LCM matrices. For general accounts, see e.g. [9, 18]. There
are also various generalizations of GCD and LCM matrices to be found in the
literature. The most important ones are the lattice-theoretic generalizations
into meet and join matrices, see e.g. [16].

Over the years some authors have studied number-theoretic matrices that
are neither GCD nor LCM matrices, but are very closely related to them. For
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example, Wintner [20] published results concerning the largest eigenvalue of
the n x n matrix having
()
[2, 4]

as its 45 entry and subsequently Lindqvist and Seip [17] investigated the asymp-
totic behavior of the smallest and largest eigenvalues of the same matrix. More
recently Hilberdink [10] as well as Berkes and Weber [5] have studied this same
topic from analytical perspective.

Also the norms of GCD, LCM and related matrices have been repeatedly
studied in the literature. Altinisik et al. [2] investigated the norms of reciprocal
LCM matrices, and later Altinisik [1] published a paper about the norms of
GCD related matrix. Haukkanen [6, 7, 8] studied the n x n matrix having

r,s € R,

as its 75 entry and, among other things, gave O-estimates for the ¢, and max-
imum row and column sum norms of this matrix. In this paper we study
the same class of matrices, although we use a slightly different notation. Let
a, € R. Our goal here is to find bounds for the eigenvalues of the n x n
matrix having
(3, 4)°[i, 5°

as its 47 entry. In order to do this we use similar techniques as Ilmonen et al [15]
and Hong and Loewy [13]. One of the methods may be considered to originate
from Hong and Loewy [12]. It should be noted that not much is known about
the eigenvalues of GCD, LCM and related matrices. In addition to the articles
mentioned above there are only a few publications that provide information
about the eigenvalues (see e.g. [3, 11]).

2 Preliminaries

Let A%P denote the n x n matrix, whose ij entry is given by

where o, 3 € R. In addition, for every n € ZT we define the n x n matrix E,,
by
1 it
(En)ij _{ 0 otherwise. (2)
The matrix E, may be referred to as the incidence matrix of the set {1,2,...,n}

with respect to the divisibility relation.
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Next we define some important arithmetical functions that we need. First
of all, let N“~# be the function such that N®=#(k) = k2= # for all k € Z*. In
addition, let J,_g denote the arithmetical function with

= k> @H(1— aﬂ> (3)

plk

for all £ € Z,. This function may be seen as a generalization of the Jordan
totient function, and it is easy to see that the function J,_g can be written as

Ja—p=N"""xp, (4)
the Dirichlet convolution of N*~# and the number-theoretic Mébius function.
Remark 1. If a — 3 > 0, then clearly Jo_pg(k) >0 for allk € Z*.

Before we begin to analyze the eigenvalues of the matrix A%® we first need
to obtain suitable factorizations for it.

Proposition 1. Let F,, = diag(1,2,...,n) and D, = diag(di,ds,...,d,),

where
di = Jo—p(i) = (N5 p) (i) (5)

Then the matriz A%P can be written as
AP = FPE, D, ETFP. (6)

Proof. Since the ij element of the matrix E, D, E! is

Y Jampk)= Y (NP p)(k) = (N7 ) + (0. 5)

k1 (4.9) k1 (4.9)

= N"7P((i,)) = (5, 9)° 7", (7)

the ij element of the matrix F°E, D, ETFP is
(i, )75 = (4, 5)°[i, 4]°, (8)
which is also the ij element of A%#. ]

Remark 2. By applying Proposition 1, it is easy to see that

n

det A%P = (n! 2ﬂ]‘[Ja sk H NP5 1) (k). (9)
k=1 k=1

In case when o > 3, we are able to use a different factorization presented
in the following proposition.
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Proposition 2. Suppose that o > 3. Let Jo_g, Dy, and F), be as in Proposition
1, and let B, denote the real n X n matriz with

o Ja—p(g) ifJli
(Bn)is = { 0 otherwise. (10)
Then the matriz A%P can be written as

ALP = (FIB,)(FIB,)" = (FE.D})(FYE,D7)". (11)

Proof. First we observe that the ij element of B, B! is equal to

Y Jaslk) = D0 (NP (k) = (N7 )+ (G, )

k1 (4.9) k1 (4.9)

= N“7P((,5)) = (i,5)". (12)
Thus the ij element of (F°B,)(F’B,)T = F*(B,BI)FF is
(i, 5)°775% = (i,9)*1i, 417, (13)

which is also the ij element of the matrix A%, Thus, we have proven the first
equality. The second elquality follows from the fact that the matrix B,, can be
written as B,, = E,D2. O

In order to obtain bounds for the eigenvalues of the matrix A%# we find
out the eigenvalues of the matrix EL E,, for different n € Z*. The smallest
eigenvalue of this matrix is denoted by ¢,, and the largest by T,,. Table 1 shows
the values of the constants ¢,, and 7, for small values of n. The ij element of
the matrix EI E, is in fact equal to

|{keZ+|k§n,i|kandj|k}|:h,n—,]J, (14)
27
the greatest integer that is less than or equal to =~. This same matrix is also

[4,5]
studied by Bege [4] when he considers it as an example.

As can be seen from Table 1, the sequences (¢,)22; and (T},)52; seem to
possess certain monotonic behavior. This encourages us to present the following
conjecture.

Conjecture 1. For every n € Z* we have
tn+1 S tn and Tn S Tn+1. (15)

Calculations show that this conjecture holds for n = 2,...,100.
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n tn T, n tn T, n tn T,

2 0.381966 | 2.61803 | 15 | 0.0616080 | 23.6243 | 28 | 0.0411874 | 47.1773
3 0.267949 | 3.73205 | 16 | 0.0616079 | 26.1117 | 29 | 0.0401315 | 47.7330
4 0.252762 | 5.78339 | 17 | 0.0591935 | 26.70841 | 30 | 0.0343360 | 51.4915
5 0.204371 | 6.60665 | 18 | 0.0584344 | 29.8007 | 31 | 0.0336797 | 52.0305
6 0.129425 | 9.21230 | 19 | 0.0562263 | 30.3787 | 32 | 0.0336797 | 54.6056
7 0.118823 | 9.92035 | 20 | 0.0550575 | 33.2123 | 33 | 0.0322295 | 55.7392
8 0.118764 | 12.2892 | 21 | 0.0505600 | 34,4522 | 34 | 0.0306762 | 57.2482
9 0.116597 | 13.4520 | 22 | 0.0466545 | 36.0618 | 35 | 0.0295618 | 58.2226
10 | 0.0930874 | 15.4428 | 23 | 0.0452547 | 36.6470 | 36 | 0.0295298 | 62.7258
11 | 0.087262 16.113 | 24 | 0.0452214 | 41.0878 | 37 | 0.0289990 | 63.2500
12 | 0.087262 16.113 | 25 | 0.0451569 | 41.8465 | 38 | 0.0277260 | 64.7226
13 | 0.0791480 | 20.4160 | 26 | 0.0419049 | 43.3920 | 39 | 0.0267584 | 65.8548
14 | 0.0681283 | 22.1909 | 27 | 0.0419033 | 44.6343 | 40 | 0.0267526 | 69.2188

Table 1: The constants ¢,, and T;, for n < 40.

3 Estimations for the eigenvalues

First we assume that o > 3. From Proposition 2, it follows that in this case
the matrix A% is positive definite, and thus we are able to give a lower bound
for the smallest eigenvalue of A%,

Theorem 1. Let o > (3 and let )ff’a’ﬁ denote the smallest eigenvalue of the
matriz AP, Then

AP 2t - min Joop(i) - minfL,n??} > 0. (16)

Proof. By applying Proposition 2, we have
1 1
AP = (FPE,DE)(FPE,DE)T. (17)

By applying Remarks 1 and 2 we deduce that det A%# # 0 and furthermore
that A%P is invertible. Thus, the matrices A% and (A2#)~! are real sym-
metric and positive definite and therefore the greatest eigenvalue of (A%%)~1
is also the inverse of the smallest eigenvalue of A%”. In addition, the great-
est eigenvalue of (A27)~! is equal to |||(A%%)7! |||, the spectral norm of the
matrix (A2%)~1. Thus

1 1
ez ls — |lird enhy e 03|

n,a,8
1

(18)

S
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By applying the submultiplicativity of the spectral norm we obtain
1 1
|| eDi)(F B = Nl E) @D D B ED s (19)

—1012 _ _ _

< 1ED s - B s - MCEs) - 11D s
—1012 _ _

= IED s - NEED) s - 112w s -

Since Jo—p(i) > 0 for alli=1,...,n we have
1 1 1
Dl = e (o e )
||| |||S (Ja—p(1)" Ja—p(2) Ja—p(n) /||l
1 1
_ _ 20
121%}(11 Ja_g(i) minlgign Ja—ﬂ(i) , ( )
and similarly
2 1

max —sz
1<i<n 328

—112 . 1 1 1
L

1 1

S

= = . 21
mini<;<, 2% min{1,n?4} (21)
For the spectral norm of the matrix (EL E,)~!, we have
1
T -1l —
(G @
Now by combining equations (20), (21) and (22) with (19), we obtain
n,a,3 1
At = T T
[t abioeetr
1
Z 3
[lcear=1][5 - neezza-tis - liow g
—¢, - mi D) - mi 28
=t, i, Ja—p(1) - min{1, n“"}, (23)
which completes the proof. O

Remark 3. For a — 3 > 1 we have mini<;<p Jo—g(%) = 1. In addition, if
B >0, then min{1,n%**} = 1 and we simply have

APl > (24)

In particular, this holds for the so called power GCD matriz AP in which
B =0 and o > 1 and for the matriz ALY, which is the usual GCD matriz of
the set {1,2,...,n}.
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On the other hand, if 8 < 0, then min{1,n?%} = n?4 and

AP >t 0 (25)

For example, when considering the so called reciprocal matriz AL=1, Theorem

1 yields this bound.

Example 1. Let n =6, a =2 and 3 = % Then we have

1 V2 V3 2 Vs V6

V2 42 V6 8 V10 4V6
2E_ | V3 V6 9v3 2v3 V15 9V6 (26)
67| 2 8 2v/3 32 2v5 83 |’

V5 V10 V15 2v5 255 /30

V6 4v6 9V6 8v3 V30 36V6

1
and by Theorem 1 and Remark 3 we have )\T’Q’Q > te ~ 0.129425. Direct
1
calculation shows that in fact )\?’2’2 ~ 0.459959.

Example 2. Let n =5, a = =2 and § = —3. This time we have

1 1 1 1 1
2 4 12
RS T (R SR
2 21 1

PR B T A R L 27
5 = 27 216 243 1728 3375 )

64 172 1024

G 6 728 o 8000

125 1000 3375 8000 7776

min;<;<y, J1(¢) = 1 and min{1, 52'(_3)} = ﬁ. Thus, by Theorem 1 we have

1
AP > g Trazs ~ 1807971077,

although a direct calculation gives )\51”_2’_3 ~ 6.45967 - 107°.

In Theorem 1 we assume that « > 3. Next we are going to prove a more
robust theorem which can be used in any circumstances, but as a downside it
also gives a bit more broad bounds for the eigenvalues of the matrix A%A.
Theorem 2. Every eigenvalue of the matriz A%P lies in the union of the real

intervals

=

a+B_p 287, ; . 2681, ;
[214; T,,-max{1,n“"} 1lg%xn|,]a_g(z)| , T-max{1l,n*"} 11;11;2("|Ja_g(z)| .

k=1
(28)
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Proof. Let the matrices E,, D, and F, be as above. In addition, we denote

A =104 # = ding (/oo lTas@ sl (20

By applying Proposition 1, we obtain

AP = FPE,.D,ETFP

n n?

(30)

and next we observe that

Opxn < A2 < FPE,|D,|EYFP = FPE, A AL ET(FOYT = (FPE A (FPE AT,
(31)

where < is understood componentwise. By Theorem 8.2.12 in [14], we know
that now every eigenvalue of A7 lies in the region

U (€ C |12 = k) < p(FEEuA)(FL b)) = k), (32)
k=1

where p((FPE,A,)(FPE,A,)T) is the spectral radius of the matrix
(FPE.A)(FPE,A,)T. Since the matrix (FPE, A,)(FPE,A,)T is clearly pos-
itive semidefinite, we have
p((FfEnAn)(FfEnAn)T) = ||| (FfEnAn)(FfEnAn)”HS
2
<[F°Ms - MEwEallls - llAntnlls— 33)

=T, - max i*’ . max |J,_g(i)]
1<i<n 1<i<n

=7 . 261 i
=T, -max{l,n*"} 11;1%)(”|Ja_g(z)|. (34)

Finally, the matrix A% is real and symmetric, which means that all its eigen-
values are real. So we have proven that every eigenvalue of A% lies in the
region

U {zer ] |z — k*TP| < T,, - max{1,n*"} - max [ Jog(i)] - kY. (35)
E—1 Stsn
The claim now follows easily by removing the absolute value function. O

Remark 4. Theorem 2 is not very useful when 3 > 0, since in this case the
term max{1,n%%} often becomes large.

Example 3. Let n =4, a = —1 and § = —1. Then we obtain

—1,—-1
APV =

PN S
00| O = [ | =
—

w|"©|"@|"“|"
;|HE|HOO|H»J>|H
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Now max{1,4>D} = 1, max;<;<4 |Jo(i)| = |Jo(1)| = 1 and thus by Theorem
2 we know that the eigenvalues of AZl’_l lie in the union

[—3.78,5.78]U [~5.28, 5.78] U [~5.56, 5.78] U [5.65, 5.78] = [—5.65, 5.78]. (37)

Direct calculation shows that this really is the case, since Ay """ has 0 as an
eigenvalue of multiplicity 3 and the only nonzero eigenvalue is 1.42361.

The following corollary is a direct consequece of Theorem 2.

Corollary 1. If \ is an eigenvalue of the matriz ASP, then

A< T - max{1, 0%} - max |Jo (i) (38)
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