
East-West J. of Mathematics: Vol. 14, No 2 (2012) pp. 101-113

EXTENSIONS OF THE CLASS OF

MULTIPLICATIVE FUNCTIONS

Pentti Haukkanen

School of Information Sciences, FI-33014 University of Tampere, Finland
email: pentti.haukkanen@uta.fi

Abstract

We consider the classes of quasimultiplicative, semimultiplicative and
Selberg multiplicative functions as extensions of the class of multiplica-
tive functions. We apply these concepts to Ramanujan’s sum and its
analogue with respect to regular integers (mod r).

1 Introduction

An arithmetical function f : N → C is said to be multiplicative if f(mn) =
f(m)f(n) for all m, n ∈ N with (m, n) = 1. These functions play a central
role in number theory. The works of E. T. Bell and R. Vaidyanathaswamy are
prominent in the history of multiplicative functions, see e.g. [4, 24].

Many of the classical arithmetical functions are multiplicative, e.g. the
Möbius function, Euler’s totient function and the divisor functions. On the
other hand, multiplicative functions have some weak points, e.g., they are de-
stroyed by compositions such as cf(n), f(kn), f(k/n), f(n/k), f([k, n]), where
[k, n] is the lcm of k and n. This has led to certain extensions of the class
of multiplicative functions. In this paper we introduce quasimultiplicative,
semimultiplicative and Selberg multiplicative functions, see [11, 15, 19]. As
a motivation of these concepts we also consider multiplicative properties of
Ramanujan’s sum and its analogue with respect to regular integers [9].

There are also important subclasses of the class of multiplicative functions in
the number theoretic literature, e.g., the class of rational arithmetical functions,
see [12]. We do not consider these classes in this paper.
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2 Extensions of multiplicative functions

2.1 Extensions of multiplicative functions of one variable

The usual definition of a multiplicative function is as follows:

Definition 1. An arithmetical function f : N → C is multiplicative if

f(mn) = f(m)f(n) (1)

for all m, n ∈ N with (m, n) = 1.

It is easy to see that a multiplicative function f is totally determined by
its values at prime powers. To be more precise, an arithmetical function f is
multiplicative if and only if

f(n) =
∏
p∈P

(
f(pνp(n)

)
, (2)

where νp(n) is the exponent of p in the canonical factorization of n. If f is a
multiplicative function not identically zero, then f(1) = 1.

The usual multiplicativity can be easily destroyed, for instance, by multi-
plying the function values with a constant (�= 0, 1). This leads to the concept
of a quasimultiplicative function.

Definition 2. An arithmetical function f : N → C is quasimultiplicative if
there exists a nonzero constant c such that

c f(mn) = f(m)f(n) (3)

for all m, n ∈ N with (m, n) = 1.

It is easy to see that an arithmetical function f not identically zero is
quasimultiplicative if and only if f(1) �= 0 and

f(1)f(mn) = f(m)f(n) (4)

for all m, n ∈ N with (m, n) = 1. Then c = f(1). Quasimultiplicative functions
are multiplicative functions multiplied by a constant. An arithmetical function
f not identically zero is quasimultiplicative if and only if f(1) �= 0 and f/f(1)
is multiplicative.

D. B. Lahiri [11] introduced the concept of quasimultiplicative functions as
a special case of hypomultiplicative functions. Lahiri noted that r2(n), r4(n)
and r8(n) are examples of quasimultiplicative functions, where rs(n) is the
number of representations of n as the sum of s squares.

The concept of a multiplicative function or a quasimultiplicative function is
not satisfactory in the sense that compositions such as f(kn), f(k/n), f(n/k),
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f([k, n]) (k ∈ N\ {1}) preserve neither multiplicativity nor quasimultiplicativ-
ity. This has led to the concepts of semimultiplicative and Selberg multiplica-
tive functions.

We first introduce the concept of a semimultiplicative function. This con-
cept is due to David Rearick [15] and is also considered, e.g., in the book by
R. Sivaramakrishnan [20]. For further material, see [8, 9, 16].

Definition 3. An arithmetical function f : N → C is said to be semimultiplica-
tive if there exists a nonzero constant c, a positive integer a and a multiplicative
function fm such that

f(n) = cfm(n/a) (5)

for all n ∈ N. (Here fm(x) = 0 if x is not a positive integer.)

Note that if f is not identically zero, then f(a) = c �= 0 and f(n) = 0 for
n < a. The following theorem follows easily from the definition.

Theorem 1. An arithmetical function f not identically zero is semimultiplica-
tive if and only if there exists a positive integer a such that f(a) �= 0 and f(ax)
is an arithmetical function (i.e. f(ax) = 0 if x is not a positive integer) and

f(an)
f(a)

is multiplicative in n.

This can also be written in the following form.

Theorem 2. An arithmetical function f not identically zero is semimulti-
plicative if and only if there exists a positive integer a such that f(a) �= 0 and
f(n) = 0 whenever a � n and

f(a)f(amn) = f(am)f(an) whenever (m, n) = 1.

A further characterization is as follows: this nice identity was proved by
Rearick [15];

Theorem 3. An arithmetical function f is semimultiplicative if and only if

f(m)f(n) = f((m, n))f([m, n]) (6)

for all m, n ∈ N.

Semimultiplicative functions f with a = 1 and c = 1 (i.e. f(1) = 1) are
multiplicative functions and semimultiplicative functions f with a = 1 (i.e.
f(1) �= 0) are quasimultiplicative functions.

We now go to the concept of Selberg multiplicative functions. The term
“Selberg multiplicative” was given in [5, 10] in honor of Selberg who intro-
duced these functions in [19]. Selberg [19] said on the concept of the usual
multiplicative functions that “I have never been very satisfied with this defini-
tion and would prefer to define a multiplicative function as follows”.
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Definition 4. An arithmetical function f : N → C is Selberg multiplicative if
for each prime p there exists Fp : N0 → C with Fp(0) = 1 for all but finitely
many primes p such that

f(n) =
∏
p∈P

Fp(νp(n)) (7)

for all n ∈ N, where νp(n) is the exponent of p in the canonical factorization
of n.

Multiplicative functions f are Selberg multiplicative with

Fp(νp(n)) = f(pνp(n)). (8)

Quasimultiplicative functions f are Selberg multiplicative with Selberg factor-
ization

f(n) = f(1)
∏
p∈P

(
f(pνp(n))

f(1)

)
(9)

provided that f(1) �= 0.
The following theorem was given in [8].

Theorem 4. An arithmetical function is Selberg multiplicative if and only if
it is semimultiplicative. In fact, a semimultiplicative function f possesses a
Selberg factorization as

f(n) = f(a)
∏
p∈P

(
f(apνp(n)−νp(a))

f(a)

)
. (10)

Selberg multiplicative (or semimultiplicative) functions possess the follow-
ing useful properties.

(i) Dirichlet convolution preserves Selberg multiplicativity.

(ii) Usual product preserves Selberg multiplicativity.

(iii) Compositions

f(kn), f(k/n), f(n/k), f((k, n)), f([k, n]), k ∈ N,

preserve Selberg multiplicativity.

Property (i) is proved in [15], property (ii) is easy to prove and properties
(iii) are presented in [15, 19] without proofs.

We close this section with a short summary:
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(a) Multiplicative functions are quasimultiplicative, and quasimultiplicative
functions are semimultiplicative.

(b) Semimultiplicative functions f with f(1) �= 0 are quasimultiplicative.

(c) Quasimultiplicative functions f with f(1) = 1 are multiplicative.

(d) Selberg multiplicative functions are the same as semimultiplicative func-
tions.

2.2 Extensions of multiplicative functions of several
variables

The usual notion of multiplicative functions of several variables is presented in
the following definition.

Definition 5. An arithmetical function f : Nu → C of u variables is multi-
plicative in n1, n2, . . . , nu if

f(n1m1, n2m2, . . . , numu) = f(n1, n2, . . . , nu)f(m1 , m2, . . . , mu) (11)

for all n1, n2, . . . , nu ∈ N and m1, m2, . . . , mu ∈ N with (n1n2 · · ·nu, m1m2 · · ·mu) =
1.

This definition means that a multiplicative function f is completely deter-
mined by its values f(pa1 , pa2 , . . . , pau) at prime powers. In fact, an arithmeti-
cal f is multiplicative in n1, n2, . . . , nu if and only if

f(n1, n2, . . . , nu) =
∏

p|n1n2···nu

f(pνp(n1), pνp(n2), . . . , pνp(nu)) (12)

for all n1, n2, . . . , nu ∈ N. If a multiplicative function f is not identically zero,
then f(1, 1, . . . , 1) = 1.

The concept of multiplicative functions is easy to generalize to the concept
of quasimultiplicative functions.

Definition 6. An arithmetical function f : Nu → C of u variables is quasimul-
tiplicative in n1, n2, . . . , nu if there exists a nonzero constant c such that

c f(n1m1, n2m2, . . . , numu) = f(n1 , n2, . . . , nu)f(m1 , m2, . . . , mu) (13)

for all n1, n2, . . . , nu ∈ N and m1, m2, . . . , mu ∈ N with (n1n2 · · ·nu, m1m2 · · ·mu) =
1.

It is easy to see that an arithmetical function f not identically zero is
quasimultiplicative if and only if f(1, 1, . . . , 1) �= 0 and

f(1, 1, . . . , 1)f(n1m1, n2m2, . . . , numu) = f(n1, n2, . . . , nu)f(m1 , m2, . . . , mu)
(14)
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for all n1, n2, . . . , nu ∈ N and m1, m2, . . . , mu ∈ N with (n1n2 · · ·nu, m1m2 · · ·mu) =
1.

Quasimultiplicative f with f(1, 1, . . . , 1) = 1 are multiplicative functions,
and an arithmetical function f not identically zero is quasimultiplicative if and
only if f(1, 1, . . . , 1) �= 0 and f/f(1, 1, . . . , 1) is multiplicative.

One of Selberg’s motivations to define multiplicative functions via Definition
4 was that this concept has a natural generalization to arithmetical functions
of several variables.

Definition 7. An arithmetical function f : Nu → C of u variables is Selberg
multiplicative in n1, n2, . . . , nu if for each prime p there exists Fp : Nu

0 → C
with Fp(0, 0, . . . , 0) = 1 for all but finitely many primes p such that

f(n1 , n2, . . . , nu) =
∏
p∈P

Fp(νp(n1), νp(n2), . . . , νp(nu)) (15)

for all n1, n2, . . . , nu ∈ N.

Multiplicative functions f are Selberg multiplicative with

Fp(νp(n1), νp(n2), . . . , νp(nu)) = f(pνp(n1), pνp(n2), . . . , pνp(nu)). (16)

Quasimultiplicative functions are Selberg multiplicative with Selberg factoriza-
tion

f(n1, n2, . . . , nu) = f(1, 1, . . . , 1)
∏
p∈P

(
f(pνp(n1), pνp(n2), . . . , pνp(nu))

f(1, 1, . . . , 1)

)
(17)

provided that f(1, 1, . . . , 1) �= 0. Semimultiplicative functions of several vari-
ables have not hitherto been considered in the literature. We suggest the fol-
lowing definition which reduces to the concept of semimultiplicative functions
of Rearick for u = 1.

Definition 8. An arithmetical function f : Nu → C of u variables is semimul-
tiplicative in n1, n2, . . . , nu if there exists a nonzero constant c, positive integers
a1, a2, . . . , au and a multiplicative function fm such that

f(n1 , n2, . . . , nu) = c fm(n1/a1, n2/a2, . . . , nu/au) (18)

for all n1, n2, . . . , nu ∈ N.

Note that if f is not identically zero, then f(a1 , a2, . . . , au) = c �= 0, and
f(n1 , n2, . . . , nu) = 0 if ni < ai for some i = 1, 2, . . . , u. A generalization of
Theorem 1 can be written as follows:
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Theorem 5. An arithmetical function f not identically zero is semimulti-
plicative if and only if there exist positive integers a1, a2, . . . , au such that
f(a1 , a2, . . . , au) �= 0 and f(a1x1, a2x2, . . . , auxu) is an arithmetical function
(i.e. f(a1x1, a2x2, . . . , auxu) = 0 if x1, x2, . . . , xu are not positive integers)
and

f(a1n1, a2n2, . . . , aunu)
f(a1, a2, . . . , au)

is multiplicative in n1, n2, . . . , nu.

Proof. Take

fm(n1, n2, . . . , nu) =
f(a1n1, a2n2, . . . , aunu)

f(a1, a2, . . . , au)
.

�
Theorem 2 can be generalized as follows:

Theorem 6. An arithmetical function f not identically zero is semimulti-
plicative if and only if there exist positive integers a1, a2, . . . , au such that
f(a1 , a2, · · · , au) �= 0 and f(n1, n2, . . . , nu) = 0 whenever ai � ni for some
i = 1, 2, . . . , u and

f(a1, a2, . . . , au)f(a1m1n1, a2m2n2, . . . , aumunu)
= f(a1m1, a2m2, . . . , aumu)f(a1n1, a2n2, . . . , aunu) (19)

for all n1, n2, . . . , nu ∈ N and m1, m2, . . . , mu ∈ N with (n1n2 · · ·nu, m1m2 · · ·mu) =
1.

Theorem 7. Each semimultiplicative function f is Selberg multiplicative and
possesses a Selberg factorization as

f(n1 , n2, . . . , nu)

= f(a1, a2, . . . , au)
∏
p∈P

(
f(a1p

νp(n1)−νp(a1), a2p
νp(n2)−νp(a2), . . . , aupνp(nu)−νp(au))

f(a1 , a2, . . . , au)

)

(20)

provided that f(a1 , a2, . . . , au) �= 0.

Proof. Assume that ai � ni for some i = 1, 2, . . . , u. Then f(n1, n2, . . . , nu) = 0.
Further, νp(ni)−νp(ai) < 0 and therefore ai � aip

νp(ni)−νp(ai). This shows that

f(a1p
νp(n1)−νp(a1), a2p

νp(n2)−νp(a2), . . . , aupνp(nu)−νp(au)) = 0,

and thus the right-hand side of (20) is also zero. So, (20) holds in this case.
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Assume that ai | ni for all i = 1, 2, . . . , u. Then ni = aimi for all i =
1, 2, . . . , u. Thus, applying (19) we obtain

f(n1 , n2, . . . ,nu) = f(a1m1, a2m2, . . . , aumu)

= f(a1, a2, . . . , au)
∏
p∈P

(
f(a1p

νp(m1), a2p
νp(m2), . . . , aupνp(mu))

f(a1 , a2, . . . , au)

)
.

This completes the proof. �

Remark 1. There exist Selberg multiplicative functions of several variables
that are not semimultiplicative. For example, let f : N2 → C be a Selberg
multiplicative function such that Fp(s1, s2) = 1 except for that F2(0, 0) = 0.
This means that

f(n1 , n2) =

{
0 if 2 � n1 and 2 � n2,
1 otherwise.

Thus, for instance, f(1, 1) = 0, f(1, 2) = f(2, 1) = 1. Then f is not semimulti-
plicative. In fact, since f(1, 2) �= 0, we have a1 = 1 and a2 ∈ {1, 2}, and since
f(2, 1) �= 0, we have a1 ∈ {1, 2} and a2 = 1. Therefore, a1 = 1 and a2 = 1, but
this is impossible, since f(1, 1) = 0.

Remark 2. It is easy to see that Selberg multiplicative functions of several
variables preserve the Dirichlet convolution, the usual product and also compo-
sitions like in item (iii) in Section 2.1. It is likewise easy to see that semimulti-
plicative functions of several variables preserve the Dirichlet convolution but it
is not known whether semimultiplicative functions of several variables preserve
the usual product and compositions like in item (iii) in Section 2.1.

3 Ramanujan’s sum and its analogue with

respect to regular integers

3.1 Definitions and convolutional expressions

Ramanujan’s [14] sum cr(n) is defined as

cr(n) =
∑

a (mod r)
(a,r)=1

exp(2πian/r). (21)

It can be written as
cr(n) =

∑
d|(n,r)

dμ(r/d), (22)
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which may be considered an arithmetical expression or a convolutional expres-
sion with respect to n or r. See [3, 13, 20].

Let ηk denote the arithmetical function defined as ηk(m) = m if m | k, and
ηk(m) = 0 otherwise. Equation (22) can be written in terms of a convolution
with respect to n as

cr(n) = [ηr(·)μ
(
r/(·)) ∗ 1(·)](n), (23)

where ∗ is the Dirichlet convolution and 1(n) = 1 for all n ∈ N. Equation (22)
can also be written in terms of a convolution with respect to r as

cr(n) = [ηn ∗ μ](r). (24)

An element a in a ring R is said to be regular (following von Neumann) if
there exists x ∈ R such that axa = a. An integer a is said to be regular (mod
r) if there exists an integer x such that a2x ≡ a (mod r). A regular integer
(mod r) is regular in the ring Zr in the sense of von Neumann. An integer a is
invertible (mod r) if (a, r) = 1. It is clear that each invertible integer (mod r)
is regular (mod r). See [1, 9, 23]

An analogue of Ramanujan’s sum with respect regular integers (mod r) is
defined as

cr(n) =
∑

a (mod r)
a regular (mod r)

exp(2πian/r), (25)

where n ∈ Z and r ∈ N. See [9]. The function cr(n) also has an arithmetical
(or a convolutional) expression. For this purpose we introduce some concepts.

A divisor d of n is said to be a unitary divisor of n (written as d‖n) if
(d, n/d) = 1. The unitary convolution of arithmetical functions f and g is
defined as

(f ⊕ g)(n) =
∑
d‖n

f(d)g(n/d). (26)

For material on unitary convolution, we refer to [7, 13, 20, 24].
Let r ∈ N be fixed. Let gr denote the characteristic function of the unitary

divisors of r, that is, gr(n) = 1 if n‖r, and gr(n) = 0 otherwise. Then gr(n) is
multiplicative in n. Let μr denote the function defined by

(μr ∗ 1)(n) = gr(n). (27)

Then μr(n) is multiplicative in n given as follows:
(i) If p‖r, then μr(p) = 0, μr(p2) = −1, μr(pj) = 0 for j ≥ 3.
(ii) If pa‖r with a ≥ 2, then μr(p) = −1, μr(pa) = 1, μr(pa+1) = −1, μr(pj) = 0
for j �= 0, 1, a, a + 1.
(iii) If p � r, then μr(p) = −1, μr(p

j) = 0 for j ≥ 2.
In addition, μr(1) = 1.
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Now, we are able to present an arithmetical expression for cr(n). The
function cr(n) can be written as

cr(n) =
∑

d|(n,r)

dμr(r/d). (28)

This can also be written as the Dirichlet convolution with respect to the variable
n in the form

cr(n) = [ηr(·)μr

(
r/(·)) ∗ 1(·)](n). (29)

A unitary convolution expression of cr(n) with respect to the variable r is
presented in [9] as

cr(n) = [c(·)(n) ⊕ 1(·)](r). (30)

3.2 Even functions (mod r)

Let r ∈ N be fixed. A function f : Z → C is said to be r-periodic or periodic
(mod r) if f(n) = f(n + r) for all n ∈ Z. A function f : Z → C is said to be
r-even or even (mod r) if f(n) = f((n, r)) for all n ∈ Z. Each r-even function
is r-periodic. Ramanujan’s sum cr(n) and its analogue cr(n) are examples of
r-even functions.

For material on r-periodic and r-even functions, we refer to [3, 6, 13, 17,
18, 20, 22].

3.3 Multiplicative properties

We here present some multiplicative properties of the usual Ramanujan’s sum
and its analogue with respect to regular integers (mod r). We begin with a
general theorem on multiplicative r-even functions.

Theorem 8. Let f(n, r) be an arithmetical function of two variables. If for
each r ≥ 1, f(n, r) is r-even as a function of n and if for each n ≥ 1, f(n, r) is
multiplicative in r, then f(n, r) is multiplicative as a function of two variables
r and n (∈ N).

Proof. See [9]. Let (mr, ns) = 1. Then

f(mn, rs) = f(mn, r)f(mn, s) = f((mn, r), r)f((mn, s), s)
= f((m, r), r)f((n, s), s) = f(m, r)f(n, s).

The proof is completed. �
The following multiplicative properties of Ramanujan’s sum are known in

the literature, see e.g. [2, 8, 21].

Theorem 9. (1) For each n ∈ Z, cr(n) is multiplicative in r.
(2) For each r ∈ N, cr(n) is semimultiplicative in n (∈ N).
(3) cr(n) is multiplicative as a function of two variables r and n (∈ N).
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Proof. (1) Equation (24) says that cr(n) in r is the Dirichlet convolution of the
function ηn(r) in r and the Möbius function μ(r). Since these functions are
multiplicative in r and the Dirichlet convolution of two multiplicative functions
is multiplicative [13], Ramanujan’s sum cr(n) is multiplicative in r.

(2) We utilize Equation (23). The functions ηr(n) and 1(n) are multiplica-
tive in n and therefore they are also semimultiplicative in n. The function
μ(n) is multiplicative in n and thus μ

(
r/n

)
is semimultiplicative in n. The

usual product and the Dirichlet convolution of semimultiplicative functions is
semimultiplicative. This shows that cr(n) is semimultiplicative in n.

(3) This follows directly from Theorem 8. �
We next present multiplicative properties of the analogue of Ramanujan’s

sum with respect to regular integers (mod r), see [9].

Theorem 10. (1) For each n ∈ Z, cr(n) is multiplicative in r.
(2) For each r ∈ N, cr(n) is semimultiplicative in n (∈ N).
(3) cr(n) is multiplicative as a function of two variables r and n (∈ N).

Proof. (1) Equation (30) says that cr(n) in r is the unitary convolution of
Ramanujan’s sum cr(n) in r and the constant function 1(r). Since these func-
tions are multiplicative in r and the unitary convolution of two multiplicative
functions is multiplicative [13], we see that cr(n) is multiplicative in r.

(2) We utilize Equation (29). The functions ηr(n) and 1(n) are multiplica-
tive in n and therefore they are semimultiplicative in n. The function μr(n)
is multiplicative in n and thus μr

(
r/n

)
is semimultiplicative in n. The usual

product and the Dirichlet convolution of semimultiplicative functions is semi-
multiplicative. This shows that cr(n) is semimultiplicative in n.

(3) This follows directly from Theorem 8. �

Remark 3. We know that Ramanujan’s sum cr(n) is multiplicative in r and
therefore completely determined by its values at prime powers given as

cpk(n) =

⎧⎪⎨
⎪⎩

pk − pk−1 if pk | n

−pk−1 if pk−1 | n, pk � n

0 otherwise.
(31)

We also know that Ramanujan’s sum cr(n) is semimultiplicative in n (∈ N).
The smallest value of n (∈ N) for which cr(n) �= 0 is n = r/γ(r), where γ(r) is
the product of the distinct prime factors of r. This means that the constant a in
Definition 3 is equal to r/γ(r) for Ramanujan’s sum cr(n). This follows from
the property (31). Ramanujan’s sum cr(n) is quasimultiplicative in n (∈ N) if
and only if a = r/γ(r) = 1, which means that r is squarefree. Ramanujan’s sum
cr(n) is multiplicative in n (∈ N) if and only if cr(1) = μ(r) = 1, which means
that r is squarefree and ω(r) is even, where ω(r) is the number of distinct prime
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factors of r. As a consequence of the quasimultiplicativity of cr(n) we obtain
the property

cr(m)cr(n) = μ(r)cr(mn) if (m, n) = 1, (32)

which can also be found in [13, p. 90].

Remark 4. We know that cr(n) is multiplicative in r. Its values at prime
powers r = pk are given as

cpk (n) = 1 + cpk(n) =

⎧⎪⎨
⎪⎩

1 + pk − pk−1 if pk | n

1 − pk−1 if pk−1 | n, pk � n

1 otherwise.

We also know that cr(n) is semimultiplicative in n (∈ N). The smallest value
of n (∈ N) for which cr(n) �= 0 is n =

∏
p‖r p. This means that the constant a

in Definition 3 is equal to n =
∏

p‖r p. In fact, by the multiplicativity of cr(n)
in r we have

cr(n) =
∏
pk‖r

(1 + cpk(n)).

If k = 1 (i.e. p‖r), then 1 + cpk(1) = 1 + μ(p) = 0 and 1 + cpk(p) = 1 + φ(p) =
p �= 0. If k ≥ 2, then 1 + cpk(1) = 1 + μ(pk) = 1 �= 0. This shows that

n =
∏
p‖r

p
∏
pk‖r
k≥2

1

is the smallest value of n (∈ N) for which cr(n) �= 0. The function value of
cr(n) at n =

∏
p‖r p is also

∏
p‖r p. This implies that cr(n) is multiplicative in

n if and only if
∏

p‖r p = 1, which holds if and only if r is squareful or r = 1.
Note that cr(n) is quasimultiplicative in n if and only if it is multiplicative in
n. This shows that

cr(m)cr(n) = μ(r)cr(mn) if (m, n) = 1, (33)

where μ(r) denotes the arithmetical function such that μ(r) = 1 if r is squareful
or r = 1, and μ(r) = 0 otherwise.

Remark 5. It is known [20] that if f(n, r) is multiplicative as a function of
two variables, then for any r ≥ 1, f(m, r)f(n, r) = f(1, r)f(mn, r) whenever
(m, n) = 1. Taking f(n, r) = cr(n) gives (32), and taking f(n, r) = cr(n) gives
its analogue (33).
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