A NOTE ON STRONGLY IFP SUBMODULES
AND MODULES

Bunthita Chattae and N. V. Sanh*

Department of Mathematics
Faculty of Science, Mahidol University
Center of Excellence in Mathematics
Bangkok 10400, Thailand

e-mail: nguyen.san@mahidol.ac.th

Abstract

In this note we rename the structure of strongly IFP submodules and make some corrections on a paper of some authors in our group that was appeared recently.

1 Introduction

Throughout this paper, all rings are associative rings with identity and all modules are unitary right R-modules. Let R be a ring and M a right R-module. Denote $S = \text{End}_R(M)$, the endomorphism ring of the module M. A submodule X of M is called a fully invariant submodule of M, if $f(X) \subseteq X$ for any $f \in S$. Especially, a right ideal of R is a fully invariant submodule of R_R if it is a two-sided ideal of R. The class of all fully invariant submodules of M is non-empty and closed under intersections and sums. A right R-module M is called a self-generator if it generates all its submodules. Following [10], a fully invariant proper submodule X of M is called a prime submodule of M if for any ideal I of $S = \text{End}_R(M)$, and any fully invariant submodule U of M, $I(U) \subseteq X$ implies that either $I(M) \subseteq X$ or $U \subseteq X$. A fully invariant submodule X of M is called a strongly prime submodule of M if for any $\varphi \in S = \text{End}_R(M)$ and $m \in M$, $\varphi(m) \in X$ implies that either $\varphi(M) \subseteq X$ or $m \in X$. The basic Theorem 2.1 in [10] shows that the class of prime submodules of a given module has some properties similar to that of prime ideals in an associative ring. Following this

*Corresponding author

Key words: Strongly prime submodules, strongly IFP submodules.
2010 AMS Mathematics classification: 16D60, 16N40, 16N60, 16N80.
theorem, a fully invariant proper submodule X of M is prime if and only if for any $\varphi \in S$ and $m \in M$, $\varphi Sm \subset X$ implies that $\varphi(M) \subset X$ or $m \in X$. Using this property, one can see that every strongly prime submodule is prime.

Following [18, Definition 2.1], a submodule X of a right R-module M is said to have insertion factor property (briefly, an IFP-submodule) if for any endomorphism φ of M and any element $m \in M$, $\varphi Sm \subset X$ implies that $\varphi(M) \subset X$ or $m \in X$. Using this property, one can see that every strongly prime submodule is prime.

Following [18, Definition 2.1], a submodule X of a right R-module M is said to have insertion factor property (briefly, an IFP-submodule) if for any endomorphism φ of M and any element $m \in M$, $\varphi Sm \subset X$ implies that $\varphi(M) \subset X$ or $m \in X$. Using this property, one can see that every strongly prime submodule is prime.

A right ideal I of R is an IFP-right ideal if it is an IFP submodule of R_R, that is for any $a, b \in R$, if $ab \in I$, then $aRb \subset I$. A right R-module M is called an IFP-module if 0 is an IFP submodule of R.

A ring R is IFP if 0 is an IFP ideal. A right R-module M is called a semiprime module if 0 is a semiprime submodule of M.

Proposition 1.1. [1, Proposition 2.3] Let M be a right R-module which is a self-generator and X, a fully invariant submodule of M. Then X is a semiprime submodule if and only if whenever $f \in S$ with $fSf(M) \subset X$, then $f(M) \subset X$.

2 Strongly IFP-submodules and modules.

Definition 2.1. A fully invariant proper submodule X of M is called strongly IFP if for any $\psi \in S$ and $m \in M$, $\psi^2(m) \in X$ implies $\psi Sm \subset X$. A right R-module M is called a strongly IFP-module if 0 is a strongly IFP submodule of M.

In [8], authors had a confusion in applying Proposition 1.1. In this result, we need the condition of self-generator and because of this, we could not call it completely semiprime. Moreover, authors did not define completely prime submodules. By the Proposition 2.3 below, we call such a submodule strongly IFP.

Remark 2.2. If M is a self-generator, then every strongly IFP-submodule is semiprime.

Proof. The proof can be found in [8, Remark 2.2].

Proposition 2.3. Let X be a strongly IFP submodule of M, and $S = \text{End}(M_R)$. Then,

1. X is an IFP-submodule of M,

2. if $\varphi, \psi \in S$ and $m \in M$ such that $\varphi\psi(m) \in X$, then $\psi\varphi(m) \in X$.
A note on strongly IFP submodules and modules

Proof. The proof can be found in [8] and we give here for the sake completeness.

(1.) Let \(\varphi \in S \) and \(m \in M \) such that \(\varphi(m) \in X \). Since \(X \) is fully invariant, we get \(\varphi^2(m) \in X \). By definition of strongly IFP submodules, we get \(\varphi Sm \subset X \), proving that \(X \) is IFP.

(2.) Take any \(\varphi, \psi \in S \), \(m \in M \) with \(\varphi \psi(m) \in X \). Since \(X \) is fully invariant, we get \((\psi \varphi \psi)^2(m) \in X \). By definition 2.1, we get \((\psi \varphi \psi)^2 Sm \subset X \). Hence, \(\psi \varphi \varphi(m) \in X \) or \((\psi \varphi)^2(m) \in X \). Since \(X \) is strongly IFP, \(\psi \varphi Sm \subset X \). This shows that \(\psi \varphi(m) \in X \), proving our claim. \(\square \)

The following Proposition is a correction of [8, 2.10]. The condition that being finitely generated is needed.

Proposition 2.4. Let \(M \) be a right \(R \)-module and \(S = \text{End}(M_R) \).

(1) If \(X \) is a strongly IFP submodule of \(M \), then \(I_X \) is a strongly IFP ideal of \(S \).

(2) Let \(P \) be a strongly IFP-ideal of \(S \). If \(M \) is finitely generated and a self-generator, then \(X = P(M) \) is a strongly IFP submodule of \(M \) and \(I_X = P \).

Proof. (1). Let \(\varphi^2 \psi \in I_X \). Then \(\varphi^2 \psi(M) \subset X \). This means for any \(m \in M \) we have \(\varphi^2 \psi(m) \in X \). Since \(X \) is strongly IFP, we get \(\varphi S \psi(m) \subset X \). It follows that \(\varphi S \psi(M) \subset X \), showing that \(\varphi S \psi \subset I_X \).

(2). Let \(P \) be a strongly IFP ideal of \(S \) and put \(X = P(M) \). Since \(M \) is finitely generated, by [20, 18.4], we get \(I_X = P \). Let \(\varphi^2(m) \in X \) with \(\varphi \in S \) and \(m \in M \). Since \(M \) is a self-generator, \(mR = \sum_{i \in I} \psi_i(M) \), where \(\psi_i \in S \) for some set \(I \). It follows that \(\varphi^2 \psi_i(M) \subset X \). Thus \(\varphi^2 \psi_i \in I_X = P \). By assumption, \(\varphi S \psi_i \subset P \). Hence \(\varphi S(mR) \subset X \), and therefore \(\varphi Sm \subset X \), proving that \(X \) is a strongly IFP submodule of \(M \). \(\square \)

Proposition 2.5. Let \(X \) be a fully invariant submodule of a right \(R \)-module \(M \). \(X \) is strongly prime if and only if it is prime and strongly IFP.

Proof. From [3], \(X \) is strongly prime if and only if it is prime and IFP. By Proposition 2.3, the result follows. \(\square \)

References

