ON REVERSIBILITY OF RINGS WITH INVOLUTION

Usama A. Aburawash and Muna E. Abdulhafed

Department of Mathematics and Computer Science
Faculty of Science, Alexandria University, Alexandria, Egypt
e-mail: aburawash@alexu.edu.eg

Faculty of Arts and Science, Azzaytuna University, Tarhunah, Libya
muna.am2016@gmail.com

Abstract

Let R be a ring with involution \ast. We give the notion of central \ast-reversible \ast-rings which generalizes weakly \ast-reversible \ast-rings. Moreover, we introduce the class of weakly \ast-rings which is a generalization of central \ast-reversible \ast-rings and investigate their properties. Further, a generalization of the class of quasi-\ast-IFP \ast-rings is given; namely weakly quasi-\ast-IFP \ast-rings. Since every \ast-reversible \ast-ring is central \ast-reversible, we give sufficient conditions for central \ast-reversible, weakly \ast-reversible and weakly quasi-\ast-IFP \ast-rings to be \ast-reversible and some examples are given to illustrate these situations. Finally, we show that the properties of \ast-reversible, central \ast-reversible, weakly \ast-reversible and weakly quasi-\ast-IFP can be transfer to some extensions of the \ast-ring.

1 Introduction

Throughout this paper, a ring will always mean an associative ring with unity unless otherwise stated. A ring R is said to be \ast-ring if on R there is defined an involution \ast; that is an anti-isomorphism of order two. The right annihilator of the nonempty set A of R is denoted by $r_R(A)$ and the right \ast-annihilator of A is denoted by $r_{R}(A) = \{x \in R \mid Ax = Ax^* = 0\}$. If there is no ambiguity, we omit the subsuffix R. A \ast-ideal (self-adjoint) I of R is an ideal closed under involution. A self adjoint idempotent; $e^2 = e = e^*$, is

Key words: Involution; \ast-Reversible; Central \ast-reversible; Weakly \ast-reversible; Quasi-\ast-IFP; Weakly \ast-IFP; Weakly quasi-\ast-IFP \ast-rings.

2010 AMS Mathematics classification:
called projection. A nonzero element \(a \) of a *-ring \(R \) is called *-zero divisor if \(ab = 0 = a^*b \), for some nonzero element \(b \in R \) and \(R \) is *-domain if it has no nonzero *-zero divisors, from [6]. A *-ring \(R \) is said to be Abelian (*-Abelian) if every idempotent (projection) of \(R \) is center. A *-ring \(R \) is reduced if it has no nonzero nilpotent elements. A ring \(R \) is called semicommutative or has (IFP) if for all \(a, b \in R \), \(ab = 0 \) implies \(aRb = 0 \) (equivalently \(r(a) \) is an ideal of \(R \) for all \(a \in R \) (see [10]). A *-ring \(R \) is said to have *-IFP if for all \(a, b \in R \), \(ab = 0 \) implies \(aRb^* = 0 \) (equivalently \(r(a) \) is a *-ideal of \(R \) for all \(a \in R \) (see [4]). From [13], recall a ring \(R \) is weakly semicommutative if for all \(a, b \in R \), \(ab = 0 \) implies \(ab \) is a nilpotent element for each \(r \in R \). By [7], a ring \(R \) is called reversible if for all \(a, b \in R \), \(ab = 0 \) implies \(ba = 0 \). According to [3], a *-ring \(R \) is called *-reversible if for all \(a, b \in R \), \(ab = 0 = ab^* \) implies \(ba = 0 \), and \(R \) has quasi-*-IFP if for all \(a, b \in R \), \(ab = ab^* \) implies \(aRb = 0 \). From [5], an element \(a \) of a *-ring \(R \) is called *-nilpotent if \(a^n = (aa^*)^n = 0 \), for some positive integers \(m \) and \(n \). \(R \) is *-reduced if it has no nonzero *-nilpotent elements. Following [9], a *-ring \(R \) is called Baer *-ring if the right annihilator of every nonempty subset of \(R \) is generated, as a right ideal, by a projection. By [5], a *-ring \(R \) is called *-Baer *-ring if the *-right annihilator of every nonempty subset of \(R \) is generated, as a biideal, by a projection. From [8] a ring \(R \) is central reversible rings if for all \(a, b \in R \), \(ab = 0 \) implies \(ba \) belongs to the center of \(R \) and a ring \(R \) is called weakly reversible if \(ab = 0 \) implies \(Rbra \) is nil left ideal of \(R \), for all \(a, b, r \in R \), from [11]. The natural numbers and the integers will be denoted by \(\mathbb{N} \) and \(\mathbb{Z} \), respectively. \(M_n(R) \) will denote the full matrix ring of all \(n \times n \) matrices over the ring \(R \), while \(T_n(R) \) \((T_n(E(R)) \) will denote the \(n \times n \) upper triangular matrix ring (with equal diagonal elements) over \(R \).

In this paper, we introduce central and weakly *-reversible *-rings, both are proper generalizations of *-reversible *-rings. Moreover, the class of weakly *-reversible *-rings contains strictly central *-reversible *-rings. We also prove that central *-reversible *-rings are *-Abelian and there exists a *-Abelian *-ring which is not central *-reversible. Clearly *-reversible *-rings are quasi-*-IFP and example is given to show that the converse is not true and another example shows that commutative weakly *-reversible *-rings do not necessarily have quasi-*-IFP. It is also shown that if \(R \) is a commutative *-ring, then \(T_{nE}(R) \) is weakly *-reversible (weakly quasi-*-IFP) *-ring. Moreover, weakly quasi-*-IFP condition is given for *-rings which generalizes quasi-*-IFP. We show also that commutative weakly quasi-*-IFP *-rings may not be quasi-*-IFP. Moreover, for a *-Armendariz *-ring \(R \), we prove that \(R \) is *-reversible (central *-reversible) if and only if the polynomial *-rings \(R[x] \) is *-reversible (central *-reversible) if and only if the Laurent polynomial *-ring \(R[x; x^{-1}] \) is *-reversible (central *-reversible). Furthermore, it is proved that \(R \) is *-reversible (central *-reversible) if and only if the Dorroh extension \(D(R, \mathbb{Z}) \) of
2 Central *-Reversible *-Rings

In this section, we introduce and study the class of central *-reversible *-rings, which is a generalization of *-reversible *-rings. We start by giving the main definition.

Definition. A *-ring \(R \) is called central *-reversible if for all \(a, b \in R \), \(ab = 0 = ab^* \) implies \(ba \) is central in \(R \). Consequently, \(b^*a \) is central in \(R \).

Clearly, a central reversible *-ring is central *-reversible and a *-reversible *-ring is central *-reversible. However, the next result shows that \(T_3(E)(R) \), in general, is central *-reversible but not *-reversible.

Proposition 1. Let \(R \) be a commutative *-ring, then the ring

\[
T_3(E)(R) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\}
\]

with involution defined as \(\begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}^* = \begin{pmatrix} a & d & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \) is central *-reversible *-ring.

Proof. Let \(x = \begin{pmatrix} a_1 & b_1 & c_1 \\ 0 & a_1 & d_1 \\ 0 & 0 & a_1 \end{pmatrix} \) and \(y = \begin{pmatrix} a_2 & b_2 & c_2 \\ 0 & a_2 & d_2 \\ 0 & 0 & a_2 \end{pmatrix} \in T_3(E)(R) \). If \(xy = 0 = xy^* \), then we have the following equations:

\[
\begin{align*}
a_1a_2 &= 0 \\
a_1b_2 + b_1a_2 &= 0, \quad a_1d_2 + b_1a_2 &= 0 \\
a_1c_2 + b_1d_2 + c_1a_2 &= 0, \quad a_1c_2 + b_1b_2 + c_1a_2 &= 0 \\
a_1d_2 + d_1a_2 &= 0, \quad a_1b_2 + d_1a_2 &= 0.
\end{align*}
\]

Hence \(yx = \begin{pmatrix} 0 & 0 & b_2d_1 - b_1d_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0 \), is central and consequently \(T_3(E)(R) \) is central *-reversible. On the other hand, \(T_3(E)(R) \) is not *-reversible, since \(yx \neq 0 \), while the converse is clear from [3, Example 3.8].

In general, Proposition 1 is not true for \(n \geq 4 \) which is clear from the following example.
Example 1. Consider the *-ring $T_{4E}(\mathbb{Z})$ with the involution * defined as:

$$
\begin{pmatrix}
0 & a & a_{13} & a_{14} \\
0 & a & a_{23} & a_{24} \\
0 & 0 & a & a_{34} \\
0 & 0 & 0 & a
\end{pmatrix}^* =
\begin{pmatrix}
a & a_{34} & a_{24} & a_{14} \\
0 & a & a_{23} & a_{13} \\
0 & 0 & 0 & a \\
0 & 0 & 0 & a
\end{pmatrix}.
$$

The matrices $A = \begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$ and $B = \begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$ satisfies $AB = 0 = AB^*$, but $BA = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$ is not central and so $T_{4E}(\mathbb{Z})$ is not central*-reversible.

It is clear that each central reversible is central *-reversible. However, the converse is true when the ring has *-IFP as shown in the next result.

Proposition 2. Let R be a *-ring. If R is central *-reversible and has *-IFP, then R is central reversible.

Proof. Obvious, since $ab = 0$, implies $aRb^* = 0$, by *-IFP property, and R is central reversible. □

Recall that a *-ring R is *-semiprime if and only if it is semiprime (see ([1])). Next, we give some particular conditions for a central *-reversible *-ring to be *-reversible.

Proposition 3. A semiprime central *-reversible *-ring is *-reversible.

Proof. Assume that R is a semiprime central *-reversible *-ring. If $ab = ab^* = 0$, then ba is central and consequently $baRba = 0$. Form semiprimeness, we get $ba = 0$ and so R is *-reversible. □

Proposition 4. If R is a *-Baer and central *-reversible *-ring, then R is *-reversible.

Proof. Let R be a *-Baer *-ring and $ab = 0 = ab^*$, then there exists a projection $e \in R$ such that $r_*(a) = eRe$. We have $ae = 0$ and $b = ebe = eb$, since $b \in r_*(a) = eRe$. Hence $ba = eba = bae = 0$, since ba is central, and so R is *-reversible. □

Since each Bear *-ring is *-Bear, we have the following corollary.

Corollary 1. If R is a Baer and central *-reversible *-ring, then R is *-reversible.
Furthermore, the class of central \(*\)-reversible \(*\)-rings is clearly closed under direct sums (with changeless involution) and under taking \(*\)-subrings by [3], since every \(*\)-reversible \(*\)-ring is central \(*\)-reversible.

Proposition 5. The class of central \(*\)-reversible \(*\)-ring is closed under direct sums and under taking \(*\)-subrings.

Proposition 6. Let \(R\) be a \(*\)-ring and \(e\) be a central projection of \(R\). Then \(eR\) and \((1-e)R\) are \(*\)-reversible if and only if \(R\) is \(*\)-reversible.

Proof. It suffices to show the necessity by [3, Proposition 3.15]. Let \(ab = ab^* = 0\) with \(a, b \in R\), then \(cab = cab^* = 0\) and \((1-e)ab = (1-e)ab^* = 0\). By assumption, we have \(bea = 0\) and \(b(1-e)a = 0\). Hence \(ba = bea + |b(1-e)a| = 0\) and so \(R\) is \(*\)-reversible. □

By a similar proof as **Proposition 6**, and using **Proposition 5**, the following corollary is immediate.

Corollary 2. Let \(R\) be a \(*\)-ring and \(e\) be a central projection of \(R\). Then \(eR\) and \((1-e)R\) are central \(*\)-reversible if and only if \(R\) is central \(*\)-reversible.

Recall that a \(*\)-ideal \(I\) of a \(*\)-ring \(R\) is \(*\)-nil if each element of \(I\) is \(*\)-nilpotent.

Obviously, each \(*\)-nil ideal is nil. The following example shows that the converse is not always true.

Example 2. For the \(*\)-ring \(R = \mathbb{M}_2(\mathbb{Z})\) of all \(2 \times 2\) matrices over the integers \(\mathbb{Z}\) with transpose of matrices as involution, the nonzero elements of the form
\[
\begin{pmatrix}
0 & x \\
0 & 0
\end{pmatrix}
\]
are all nilpotent but not \(*\)-nilpotent, since \(\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}^2 = 0\) but \(\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix} = \begin{pmatrix} x^2 & 0 \\ 0 & 0 \end{pmatrix} \neq 0\).

We note that the homomorphic image of a central \(*\)-reversible \(*\)-ring need not be central \(*\)-reversible as seen from the following example.

Example 3. Let \(D\) be a \(*\)-division ring, \(R = D[x,y]\) and \(I = \langle xy \rangle\), where \(xy \neq yx\). Since \(R\) is \(*\)-domain, \(R\) is central \(*\)-reversible. On the other hand, \((x+I)(y+I)\) and \((x+I)^*(y+I) = (x+I)(y+I)\) are both zero. But \((y+I)(x+I)\) is not central in \(R/I\), hence \(R/I\) is not central \(*\)-reversible.

Moreover, the next example shows that if the homomorphic image of a \(*\)-ring \(R\) is central \(*\)-reversible, then \(R\) need not be central \(*\)-reversible.
Example 4. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field, with the adjoint involution *. Consider the $*$-ideal $I = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ of R. Then R/I is central $*$-reversible, because of the commutativity property of R/I. For $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R$ where $B^* = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \in R$, we have $AB = 0 = AB^*$. Consider $C = \begin{pmatrix} c_1 & c_2 \\ 0 & c_3 \end{pmatrix} \in R$ with $c_1 \neq c_3$. It is clear that $CBA \neq BAC$ and therefore R is not central $*$-reversible.

Our next endeavour is to give a condition on the homomorphic image of a $*$-ring to be central $*$-reversible. Recall that a $*$-ring R is called unit-central, if all unit elements of R are central in R. Moreover, we show that every unit central $*$-ring is $*$-Abelian.

Proposition 7. Let R be a unit-central $*$-ring. If I is a $*$-nil ideal of R, then R/I is central $*$-reversible.

Proof. Let $a, b \in R$ with $(a + I)(b + I) = (a + I)(b + I)^* = I$. Then $ab \in I, ab^* \in I$ and so there exists a positive integers m, n, p and q such that $(ab)^m = 0$, $((ab)(ab)^*)^n = 0$, $(ab)^p = 0$ and $((ab^*)(ab^*)^*)^q = 0$. It follows that $(ba)^{m+1} = 0$, whence $1 - ba$ is unit and so central by hypothesis. Thus $rba = bar$ for any $r \in R$ and therefore $(b + I)(a + I)$ is central in R/I.

Since each $*$-reversible $*$-ring is central $*$-reversible and each $*$-domain is $*$-reversible, by [3, Example 3.2], we have immediately the following corollary.

Corollary 3. Every $*$-domain is a central $*$-reversible $*$-ring.

The converse of Corollary 3 is not true by Example 4. However, the converse is true for $*$-prime $*$-rings as follows.

Proposition 8. Let R be a $*$-ring. Then R is $*$-prime and central $*$-reversible if and only if it is $*$-domain.

Proof. Let R be $*$-prime and central $*$-reversible and $ab = ab^* = 0$ for some $a, b \in R$. We have $rab = rab^* = 0$ for every $r \in R$ and so bra and b^*ra are central. Since $bratb = 0$ and $bratb^* = 0$ for all $t \in R$, then $a = 0$ or $b = 0$ and R is a $*$-domain. The converse is obvious by Corollary 3.

It is well known from [3, Corollary 3.7] that every $*$-reversible $*$-ring is $*$-Abelian. Similarly, we have the same result for central $*$-reversible case.
Proposition 9. A central *-reversible *-ring R is *-Abelian.

Proof. Let $e^2 = e = e^* \in R$. for any $r \in R$, $(re - ere)(1 - e) = (re - ere)(1 - e)^* = 0$ implies $(1 - e)(re - ere) = re - ere$ is central. Commuting $re - ere$ by e we get $re - ere = 0$. Similarly for any $r \in R$, $(r^*e - er^*e)(1 - e) = (r^*e - er^*e)(1 - e)^* = 0$ implies $r^*e - er^*e = 0$. Therefore $re = ere = er$ and R is *-Abelian. □

The next example shows that the reverse implication of Proposition 9 is not true in general; that is there exists a *-Abelian *-ring which is not central *-reversible, and hence is not *-reversible.

Example 5. The only projections of the *-ring $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a \equiv c (\text{mod} \ 2), b \equiv 0 (\text{mod} \ 2), a, b, c \in \mathbb{Z} \right\}$ under adjoint involution * are $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and so R is *-Abelian. On the other hand, for $x = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \in R$ with $xy = xy^* = 0$, we have $yx = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$ is not central and so R is not central *-reversible.

3 Weakly *-Reversible *-Rings

In this section, we introduce another generalization for *-reversible; namely weakly *-reversible *-rings.

Definition. A *-ring R is called weakly *-reversible if for all $a, b, r \in R$, $ab = ab^* = 0$, implies Rbr is a nil left (equivalently, $braR$ is a nil right) ideal of R. Consequently, Rb^*ra is a nil left (equivalently, b^*raR is a nil right) ideal of R.

Each commutative *-ring is weakly reversible. Clearly, each weakly reversible *-ring is weakly *-reversible. The converse is true when the ring has *-IFP as shown in the following.

Proposition 10. Let R be a *-ring. If R is weakly *-reversible and has *-IFP, then R is weakly reversible.

Proof. Obvious, since $ab = 0$, implies $aRb^* = 0$, by the *-IFP property, and R is weakly reversible. □

Moreover, we can easily prove the following result.

Proposition 11. The class of weakly *-reversible *-ring is closed under direct sums (with changeless involution) and under taking *-subrings.
Proposition 12. For a commutative *-ring R, $T_{nE}(R)$ is a weakly *-reversible *-ring, with involution * defined by fixing the two diagonals considering the diagonal right / left lower as symmetric ones and interchange the symmetric elements about it; that is

\[
\begin{pmatrix}
 a & a_{12} & a_{13} & \cdots & a_{1(n-1)} & a_{1n} \\
 0 & a & a_{23} & \cdots & a_{2(n-1)} & a_{2n} \\
 0 & 0 & a & \cdots & \cdots & a_{3n} \\
 0 & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & a_{(n-1)n} & a
\end{pmatrix}^* =
\begin{pmatrix}
 a & a_{(n-1)n} & a_{(n-2)n} & \cdots & a_{2n} & a_{1n} \\
 0 & a & a_{23} & \cdots & a_{2(n-1)} & a_{1(n-1)} \\
 0 & 0 & a & \cdots & \cdots & a_{1(n-2)} \\
 0 & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & a_{12} & a
\end{pmatrix}
\]

Proof. Let R be weakly *-reversible and $A = \begin{pmatrix}
 a & a_{12} & a_{13} & \cdots & a_{1(n-1)} & a_{1n} \\
 0 & a & a_{23} & \cdots & a_{2(n-1)} & a_{2n} \\
 0 & 0 & a & \cdots & \cdots & a_{3n} \\
 0 & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & a_{12} & a
\end{pmatrix}$, $B = \begin{pmatrix}
 b & b_{12} & b_{13} & \cdots & b_{1n} \\
 0 & b & b_{23} & \cdots & b_{2n} \\
 0 & 0 & b & \cdots & \cdots & b_{3n} \\
 0 & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & b
\end{pmatrix} \in T_{nE}(R)$ satisfy $AB = 0 = AB^*$. Hence $ab = 0 = ab^*$ and since R is weakly *-reversible, then for $C = \begin{pmatrix}
 c & c_{12} & c_{13} & \cdots & c_{1n} \\
 0 & c & c_{23} & \cdots & c_{2n} \\
 0 & 0 & c & \cdots & \cdots & c_{3n} \\
 0 & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & c
\end{pmatrix}$ and $D = \begin{pmatrix}
 d & d_{12} & d_{13} & \cdots & d_{1n} \\
 0 & d & d_{23} & \cdots & d_{2n} \\
 0 & 0 & d & \cdots & \cdots & d_{3n} \\
 0 & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & d
\end{pmatrix} \in T_{nE}(R)$, there exists $k \in \mathbb{N}$, with $(cbda)^k = 0$. Thus

\[
(CBDA)^k = \begin{pmatrix}
 0 & \star & \cdots & \star \\
 0 & 0 & \star & \cdots & \star \\
 0 & 0 & 0 & \cdots & \star \\
 0 & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & 0
\end{pmatrix}
\]
and $(CBDA)^{kn} = 0$ follows and $T_{nE}(R)$ is weakly *-reversible. [\star denotes an element of R] \qed
Next, the given example shows that there exists a weakly *-reversible and quasi *-IFP *-ring which is not *-reversible.

Example 6. Let R be a commutative *-ring. Then the *-ring

$$T_{3E}(R) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\},$$

is weakly *-reversible by Proposition 12, for some $a \neq 0$. For $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, we have $AB = 0 = AB^*$ and $BA = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, so $T_{3E}(R)$ is not *-reversible, while it has quasi-*-IFP.

We note that if R is a commutative then the *-ring

$$T_{nE}(R) = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R, n \geq 3 \right\},$$

is not *-reversible by [3, Example 3.8] and is weakly *-reversible by Proposition 12. Moreover, it is clear that $T_{4E}(R)$ is not quasi-*-IFP and so $T_{nE}(R)$ is not quasi-*-IFP for $n \geq 4$.

The next example demonstrates that the condition $T_{nE}(R)$ in Proposition 12, cannot be weakened to the full matrix *-ring $M_n(R)$, where n is any integer bigger than 1.

Example 7. Let R be a weakly *-reversible *-ring and n any integer bigger than 1, then $M_2(R)$, with adjoint involution, is not weakly *-reversible. For $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, we have $AB = 0 = AB^*$ and for $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in M_2(R)$, we see that $RBCA = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix}$ is not nil.

The following result shows that the class of central *-reversible *-rings lies properly between the classes of *-reversible and weakly *-reversible *-rings.

Theorem 1. Let R be a *-ring and consider the following conditions.

1. R is *-reversible.
2. R is central *-reversible.
3. \(R \) is weakly \(* \)-reversible.

Then (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3).

Proof.

(1) \(\Rightarrow \) (2): Clearly.

(2) \(\Rightarrow \) (3): Let \(a, b \in R \) with \(ab = ab^* = 0 \). Then for all \(s \in R \), \(sab = sab^* = 0 \) and \(bsa \) is central, since \(R \) is central \(* \)-reversible. Hence \((rbsa)^2 = (rbsa)(rbsa) = r(bsa)r(bsa) = rr bs(ab)sa = 0 \), for all \(r, s \in R \) and \(R \) is weakly \(* \)-reversible.

\(\square \)

The converse of **Theorem 1** is not true by **Examples** 1 and 6. However, from **Corollary 3** and **Theorem 1** we get the following corollary.

Corollary 4. Every \(* \)-domain is a weakly \(* \)-reversible \(* \)-ring.

4 Weakly quasi-\(* \)-IFP

Here, weakly quasi-\(* \)-IFP \(* \)-rings are introduced as generalization for the class of quasi-\(* \)-IFP \(* \)-rings. First, we introduce weakly \(* \)-IFP \(* \)-rings.

Definition. A \(* \)-ring \(R \) is called weakly \(* \)-IFP if for all \(a, b \in R \), \(ab = 0 \) implies \(arb^* \in \text{nil}(R) \) for all \(r \in R \).

Each commutative \(* \)-ring is weakly \(* \)-IFP. As before, one can easily prove the following result.

Proposition 13. The class of weakly \(* \)-IFP \(* \)-ring is closed under direct sums (with changeless involution) and under taking \(* \)-subrings.

Proposition 14. For a commutative \(* \)-ring \(R \), \(T_{nE}(R) \) is weakly \(* \)-IFP, with involution \(* \) given in **Proposition 12**.

Proof. Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \in T_{nE}(R) \) with \(AB = 0 \), where \(1 \leq i \leq j \leq n \), then we have \(ab = 0 \), where \(a \) and \(b \) are the diagonal elements of \(A \) and \(B \), respectively. Since \(R \) is weakly \(* \)-IFP, there exists \(k \in \mathbb{N} \) such that \((acb)^k = 0 \) for all \(C = (c_{ij}) \in T_{nE}(R) \), where \(c \) is the diagonal element of \(C \). Hence \(((ACB^*)^k)^n = 0 \) and \(T_{nE}(R) \) is weakly \(* \)-IFP.

\(\square \)

It is clear that every \(* \)-ring having \(* \)-IFP is weakly \(* \)-IFP while the converse is not always true as shown by the following example.
Example 8. The *-ring $T_{3E}(\mathbb{Z})$ with the involution * given by:

$$
\begin{pmatrix}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{pmatrix}
\begin{pmatrix}
a d c \\
0 & a & b \\
0 & 0 & a
\end{pmatrix}
= \begin{pmatrix}
a d c \\
0 & a & b \\
0 & 0 & a
\end{pmatrix}
$$

is weakly *-IFP by Proposition 14. For $A = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$ and $B = \begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$, we have $AB = 0$ and $ARB^* = \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \neq 0$, so $T_{3E}(\mathbb{Z})$ has not *-IFP.

By the way, there exists a weakly IFP *-ring which is not weakly *-IFP as in the next example.

Example 9. Let \mathbb{F} be a field and consider the *-ring $R = \mathbb{F} \oplus \mathbb{F}$, with the exchange involution $(a, b)^* = (b, a)$, for all $a, b \in \mathbb{F}$. R is clearly weakly IFP and is not weakly *-IFP.

Next, we define weakly quasi-*-IFP *-rings

Definition. A *-ring R is said to be weakly quasi-*-IFP if for all $a, b \in R$, $ab = 0 = ab^*$ implies arb is a nilpotent element for each $r \in R$. Consequently arb^* is also nilpotent.

Each commutative *-ring is weakly quasi *-IFP. Clearly, each weakly IFP *-ring is weakly quasi-*-IFP. The converse is true when the ring has *-IFP as shown in the following.

Proposition 15. Let R be a *-ring. If R is weakly quasi-*-IFP and has *-IFP, then R is weakly IFP.

Proof. Clearly, since $ab = 0$, implies $aRb^* = 0$, by the *-IFP property, and R is weakly quasi-*-IFP.

Moreover, the class of weakly quasi-*-IFP *-ring is closed under direct sums (using changeless involution) and under taking *-subrings.

Proposition 16. The class of weakly quasi-*-IFP *-ring is closed under direct sums and under taking *-subrings.

By a proof similar to Proposition 12, we get the following.

Proposition 17. If R is a commutative *-ring, then $T_{nE}(R)$ is weakly quasi-*-IFP, with involution * given in Proposition 12.
Note that if R is a commutative *-ring then the *-ring $T_nE(R) =$ \[
\begin{pmatrix}
 a & a_{12} & a_{13} & \cdots & a_{1n} \\
 0 & a & a_{23} & \cdots & a_{2n} \\
 0 & 0 & a & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & a
\end{pmatrix}
\] with $a_{ij} \in R, n \geq 3$, is not *-reversible by [3, Example 3.8] and is weakly quasi-*-IFP by Proposition 17. However, it is clearly that $T_4E(R)$ is not quasi-*-IFP and so $T_nE(R)$ is not quasi-*-IFP for $n \geq 4$.

The next example demonstrates that the condition $T_nE(R)$ in Proposition 17, cannot be weakened to the full matrix *-ring $M_n(R)$, where $n > 1$.

Example 10. \mathbb{Z} is weakly quasi-*-IFP *-ring with identical involution, while the *-ring $M_2(\mathbb{Z})$ with adjoint involution * is not weakly quasi-*-IFP. Indeed, the matrices $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$ satisfy $AB = 0 = AB^*$ and for $C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in M_2(R)$, we have $ACB = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$ is not nilpotent.

It is well known that every *-reversible *-ring has quasi-*-IFP by [3, Proposition 3.6]. Next, we prove that central *-reversible *-rings are weakly quasi-*-IFP.

Theorem 2. Let R be a *-ring and consider the following conditions.

1. R is *-reversible.
2. R is central *-reversible.
3. R is weakly quasi-*-IFP.

Then (1) \implies (2) \implies (3).

Proof.

(1) \implies (2). Is clear.

(2) \implies (3). If $a, b \in R$ satisfy $ab = ab^* = 0$, then ba is central and $(arb)^2 = 0$. Hence arb is nilpotent for all $r \in R$ and R is weakly quasi-*-IFP.

The converse of Theorem 2 is not true by Examples 1 and 6. Moreover, from Corollary 3 and Theorem 2 we have the following result.

Corollary 5. Every *-domain is a weakly quasi-*-IFP *-ring.
From Proposition 4 we have immediately the following corollary.

Corollary 6. If \(R \) is a \(*\)-Baer and central \(*\)-reversible \(*\)-ring, then \(R \) has quasi \(*\)-IFP.

From [8, Proposition 2.20], if \(R \) is central reduced (that is every nilpotent element is central), then \(T(R, R) \) is central reversible and from [3, Proposition 3.14], if \(R \) is \(*\)-reduced and \(*\)-reversible, then \(T(R, R) \), with componentwise involution, is \(*\)-reversible. Accordingly, we have the following corollaries.

Corollary 7. If the \(*\)-ring \(R \) is central reduced \(*\)-ring then \(T(R, R) \) is central \(*\)-reversible.

Corollary 8. If the \(*\)-ring \(R \) is reduced then \(T(R, R) \) is central \(*\)-reversible.

Corollary 9. If the \(*\)-ring \(R \) is \(*\)-reduced and \(*\)-reversible then \(T(R, R) \), with componentwise involution, is central \(*\)-reversible.

Corollary 10. If the \(*\)-ring \(R \) is reduced and \(*\)-reversible then \(T(R, R) \), with componentwise involution, is central \(*\)-reversible.

By [11, Corollary 2.4], \(R \) is weakly reversible if and only if its trivial extension \(T(R, R) \) is weakly reversible and from Proposition 12, we have the following corollaries.

Corollary 11. If \(R \) is weakly reversible then \(T(R, R) \) is weakly \(*\)-reversible.

Corollary 12. If \(T(R, R) \) is weakly reversible then \(R \) is weakly \(*\)-reversible.

Corollary 13. A commutative \(*\)-ring \(R \) is weakly \(*\)-reversible if and only if \(T(R, R) \), with adjoint involution, is weakly \(*\)-reversible.

From [13, Corollary 2.1], \(R \) is weakly IFP if and only if \(T(R, R) \) is weakly IFP and by Proposition 17, we have the following corollaries.

Corollary 14. If \(R \) is weakly IFP then \(T(R, R) \) is weakly quasi \(*\)-IFP.

Corollary 15. If \(T(R, R) \) is weakly IFP then \(R \) is weakly quasi \(*\)-IFP.

Corollary 16. A commutative \(*\)-ring \(R \) is weakly quasi \(*\)-IFP if and only if \(T(R, R) \), with adjoint involution, is weakly quasi \(*\)-IFP.

5 Extensions of \(*\)-Reversible and Weakly quasi-**-IFP \(*\)-Rings

In this section, the properties of \(*\)-reversible, central \(*\)-reversible and weakly quasi-**-IFP are shown to be extended from \(*\)-ring to its localization, polynomial, Laurent polynomial, Dorroh extension and from Ore \(*\)-ring to its classical
On Reversibility of Rings with involution

Let R be a *-ring and S be a multiplicatively closed subset of R consisting of nonzero central regular elements, then the localization of R to S is $S^{-1}R = \{u^{-1}a|u \in S, a \in R\}$ is a *-ring with involution ϕ defined as:

$$(u^{-1}a)^{\phi} = u^{-1}a^{\ast} = u^{\ast-1}a^{\ast}.$$

Proposition 18. A *-ring R is *-reversible if and only if $S^{-1}R$ is *-reversible.

Proof. Let R be a *-reversible *-ring and $\alpha \beta = 0 = \alpha \beta^{\ast}$ with $\alpha = u^{-1}a$, $\beta = v^{-1}b$ where $a, b \in R$ and $u, v \in S$. Hence $\alpha \beta = u^{-1}av^{-1}b = u^{-1}v^{-1}ab = (vu)^{-1}ab = 0$ and $\alpha \beta^{\ast} = u^{-1}a(v^{\ast})^{-1}b^{\ast} = u^{-1}(v^{\ast})^{-1}ab^{\ast} = (v^{\ast}u)^{-1}ab^{\ast} = 0$, since S is contained in the center of R, so $ab = 0 = ab^{\ast}$. By hypothesis $ba = 0$ which implies $\beta \alpha = v^{-1}bu^{-1}a = v^{-1}u^{-1}ba = (uv)^{-1}ba = 0$ and $S^{-1}R$ is *-reversible. The converse is clear. \(\square\)

By a similar proof, we get analogous results for central *-reversible and weakly quasi-*-IFP *-rings.

Proposition 19. A *-ring R is central *-reversible if and only if $S^{-1}R$ is central *-reversible.

Proposition 20. A *-ring R is weakly quasi-*-IFP, if and only if $S^{-1}R$ is weakly quasi-*-IFP.

From Propositions 18, 19 and 20 we get the following corollaries.

Corollary 17. If R is a reversible *-ring, then $S^{-1}R$ is *-reversible.

Corollary 18. If $S^{-1}R$ is a reversible *-ring, then R is *-reversible.

Corollary 19. If R is a central reversible *-ring, then $S^{-1}R$ is central *-reversible.

Corollary 20. If $S^{-1}R$ is a central reversible *-ring, then R is central *-reversible.

Corollary 21. If R has quasi-*-IFP, then $S^{-1}R$ is weakly quasi-*-IFP.

Corollary 22. If $S^{-1}R$ has quasi-*-IFP, then R is weakly quasi-*-IFP.

The *-ring of Laurent polynomials in x, with coefficients in a *-ring R, consists of all formal sum $f(x) = \sum_{n=k}^{\infty} a_{i}x^{i}$ with obvious addition and multiplication, where $a_{i} \in R$ and k, n are (possibly negative) integers and with involution $*$ defined as $f^{\ast}(x) = \sum_{i=k}^{\infty} a_{i}^{\ast}x^{i}$. We denote this ring as usual by $R[x; x^{-1}]$.
Corollary 23. Let R be a *-ring. Then $R[x]$ is *-reversible if and only if $R[x;x^{-1}]$ is *-reversible.

Proof. By [3, Proposition 3.15], it suffices to establish necessity. Clearly $S = \{1, x, x^2, \ldots \}$ is a multiplicatively closed subset of $R[x]$. Since $R[x;x^{-1}] = S^{-1}R[x]$, it follows that $R[x;x^{-1}]$ is *-reversible, by Proposition 18. □

Corollary 24. Let R be a *-ring. Then $R[x]$ is central *-reversible if and only if $R[x;x^{-1}]$ is central *-reversible.

Proof. By Proposition 5, it suffices to prove necessity which can be done as the proof of Corollary 23 using Proposition 19. □

Corollary 25. For a *-ring, $R[x]$ is weakly quasi-*-IFP if and only if $R[x;x^{-1}]$ is weakly quasi-*-IFP.

Proof. By Proposition 16, it suffices to establish necessity which can be done as the proof of Corollary 23 using Proposition 20. □

From Corollary 25 we have the following results.

Corollary 26. If $R[x]$ has quasi-*-IFP, then $R[x;x^{-1}]$ is weakly quasi-*-IFP.

Corollary 27. If $R[x;x^{-1}]$ has quasi-*-IFP, then $R[x]$ is weakly quasi-*-IFP.

Corollary 28. If $R[x]$ has IFP, then $R[x;x^{-1}]$ is weakly quasi-*-IFP.

Corollary 29. If $R[x;x^{-1}]$ has IFP, then $R[x]$ is weakly quasi-*-IFP.

Corollary 30. If $R[x]$ has *-IFP, then $R[x;x^{-1}]$ is weakly quasi-*-IFP.

Corollary 31. If $R[x;x^{-1}]$ has *-IFP, then $R[x]$ is weakly quasi-*-IFP.

A *-ring R is called a *-Armendariz *-ring if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy $f(x)g(x) = f(x)g^*(x) = 0$, then $a_i b_j = 0$ for all i, j. Consequently $a_i b_j^* = 0$.

Theorem 3. Let R be a *-Armendariz *-ring. Then the following statements are equivalent.

1. R is *-reversible (central *-reversible).
2. $R[x]$ is *-reversible (central *-reversible).
3. $R[x;x^{-1}]$ is *-reversible (central *-reversible).
Proof.

(1) \implies (2): Let $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ with $f(x)g(x) = 0 = f(x)g^*(x)$. Since R is *-Armendariz, $a_i b_j = 0 = a_i b_j^*$ for each i and j. But R is *-reversible (central *-reversible), hence $b_j a_i = 0$ ($b_j a_i$ is central) for each i and j. It follows that $g(x)f(x) = 0$ ($g(x)f(x)$ is central) and $R[x]$ is *-reversible (central *-reversible).

(2) \implies (1): Clear from [3, Proposition 3.15] (Proposition 5).

(2) \iff (3): Follows from Corollary 23 (Corollary 24).

The following corollary is an immediate from Theorem 3.

Corollary 32. Let R be an Armendariz *-ring. Then the following statements are equivalent.

1. R is *-reversible (central *-reversible).
2. $R[x]$ is *-reversible (central *-reversible).
3. $R[x; x^{-1}]$ is *-reversible (central *-reversible).

The Dorroh extension $D(R, \mathbb{Z}) = \{(r, n) : r \in R, n \in \mathbb{Z}\}$ of a *-ring R is a ring with componentwise addition and multiplication $(r_1, n_1)(r_2, n_2) = (r_1 r_2 + n_1 r_2 + n_2 r_1, n_1 n_2)$. The involution of R can be extended naturally to $D(R, \mathbb{Z})$ as $(r, n)^* = (r^*, n)$ (see [2]). We have the following:

Proposition 21. A *-ring R is *-reversible if and only if its Dorroh extension $D(R, \mathbb{Z})$ of R is *-reversible.

Proof. The sufficiency is clear. For necessity, let $(r_1, n_1), (r_2, n_2) \in D(R, \mathbb{Z})$ with $(r_1, n_1)(r_2, n_2) = 0 = (r_1, n_1)(r_2, n_2)$, then from $0 = (r_1, n_1)(r_2, n_2) = (r_1 r_2 + n_1 r_2 + n_2 r_1, n_1 n_2)$ and $0 = (r_1, n_1)(r_2, n_2) = (r_1 r_2^* + n_1 r_2^* + n_2 r_1, n_1 n_2)$, we have $r_1 r_2 + n_1 r_2 + n_2 r_1 = 0$, $r_1 r_2^* + n_1 r_2^* + n_2 r_1 = 0$ and $n_1 n_2 = 0$. Since \mathbb{Z} is *-domain, $n_1 = 0$ or $n_2 = 0$. If $n_1 = 0$, we get $0 = r_1 r_2 + n_2 r_1 = r_1(r_2 + n_2)$ and $0 = r_1 r_2^* + n_2 r_1 = r_1(r_2^* + n_2)$. From the *-reversibility of R it follows that $0 = (r_2 + n_2)r_1 = r_2 r_1 + n_2 r_1 = (r_2, n_2)(r, 0)$ and so $D(R, \mathbb{Z})$ is *-reversible. □

By a similar proof to the previous proposition, we get the following.

Proposition 22. A *-ring R is central *-reversible if and only if its Dorroh extension $D(R, \mathbb{Z})$ of R is central *-reversible.

Recall that a ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. Left Ore is defined
similarly and R is Ore ring if it is both right and left Ore. For *-rings, right Ore implies left Ore and vice versa. It is a known fact that R is Ore if and only if its classical quotient ring Q of R exists and for *-rings, * can be extended to Q by $(a^{-1}b)^* = b^*(a^*)^{-1}$ (see [12, Lamme 4]).

Theorem 4. Let R be an Ore *-ring and Q be its classical quotient *-ring, then R is *-reversible if and only if Q is *-reversible.

Proof. The sufficiency is clear by [3, Proposition 3.15]. The proof of necessity is similar to that of [10, Theorem 2.6]. □

From [10, Theorem 2.6] and **Theorem 4**, we have the following corollaries.

Corollary 33. If R is a reversible *-ring, then Q is *-reversible.

Corollary 34. If Q is a reversible *-ring, then R is *-reversible.

Corollary 35. If R is a *-reversible *-ring, then Q is central *-reversible (weakly *-reversible).

Corollary 36. If Q is a *-reversible *-ring, then R is central *-reversible (weakly *-reversible).

Conclusion

Finally, we can state following implications in the class of rings with involution.

\[
\begin{array}{cccc}
\text{weakly IFP} & \uparrow & \text{central reversible} & \uparrow & \text{weakly reversible} \\
\text{reversible} & \downarrow & \text{central reversible} & \downarrow & \text{weakly reversible} \\
\text{* - reversible} & \downarrow & \text{central * - reversible} & \downarrow & \text{weakly * - reversible} \\
\text{quasi * - IFP} & \downarrow & \text{* - Abelian} & \downarrow & \text{weakly quasi * - IFP} \\
\end{array}
\]

References

On Reversibility of Rings with involution

