A NOTE ON PRIME IDEALS OF IFP-RINGS AND THEIR EXTENSIONS

Smarti Gosani\(^1\), V. K. Bhat\(^2\)

\(^1\)Department of Applied Sciences and Humanities
Model Institute of Engineering and Technology,
Jammu 181122, India
E-mail: smarti.gosani@gmail.com

\(^2\)School of Mathematics
Shri Mata Vaishno Devi University
Jammu 182320, India
E-mail: VijaykumarBhat2000@yahoo.com

Abstract

Let \(R \) be a ring, \(\sigma \) an automorphism of \(R \) and \(\delta \) a \(\sigma \)-derivation of \(R \). Let further \(\sigma \) be such that \(a\sigma(a) \in N(R) \) if and only if \(a \in N(R) \) for \(a \in R \), where \(N(R) \) is the set of nilpotent elements of \(R \). We recall that a ring \(R \) is called an IFP-ring if for \(a, b \in R, \) \(ab = 0 \) implies \(aRb = 0 \). In this paper we study the associated prime ideals of Ore extension \(R[x; \sigma, \delta] \) and we prove the following in this direction:

Let \(R \) be a right Noetherian IFP-ring, which is also an algebra over \(\mathbb{Q} \) (\(\mathbb{Q} \) is the field of rational numbers), \(\sigma \) and \(\delta \) as above. Then \(P \) is an associated prime ideal of \(R[x; \sigma, \delta] \) (viewed as a right module over itself) if and only if there exists an associated prime ideal \(U \) of \(R \) such that \((P \cap R)[x; \sigma, \delta] = P \) and \(P \cap R = U \).

1 Introduction

Notation: We follow the notation and conventions of [3]. All rings are associative with 1. For any subset \(J \) of a right \(R \)-module \(M \), annihilator of \(J \) is denoted by \(Ann(J) \). \(Spec(R) \) denotes the set of prime ideals of \(R \), the set of associated prime ideals of \(R \) (viewed as a right module over itself) is denoted by \(Ass(R_R) \). \(MinSpec(R) \) denotes the set of minimal prime ideals of \(R \). Let \(R \)

*Corresponding author

Key words: 2-primal, Minimal prime, automorphism, derivation, Ore extensions.

be a right Noetherian ring. For any uniform right \(R \)-module \(J \), the assassinator of \(J \) is denoted by \(\text{Ass}(J) \). Let \(M \) be a right \(R \)-module. Consider the set \(\{ \text{Ass}(J) \mid J \text{ is a uniform right } R\text{-submodule of } M \} \). We denote this set by \(\mathcal{A}(M_R) \).

Remark 1.1. If \(R \) is viewed as a right module over itself, we note that \(\text{Ass}(R_R) = \mathcal{A}(R_R) \) (5Y of Goodearl and Warfield [5]).

Ore Extensions: Let \(R \) bear in mind an endomorphism of \(R \). Recall that a \(\sigma \)-derivation of \(R \) is an additive map \(\delta : R \rightarrow R \) such that \(\delta(ab) = \delta(a)\sigma(b) + a\delta(b) \), for all \(a, b \in R \). In case \(\sigma \) is the identity map, \(\delta \) is called just a derivation of \(R \).

The Ore extension (or the skew polynomial ring) over \(R \) in an indeterminate \(x \) is:

\[
R[x; \sigma, \delta] = \{ f(x) = x^n a_n + ... + a_0 \mid a_i \in R \}
\]

with \(ax = x\sigma(a) + \delta(a) \) for all \(a \in R \). This definition of non-commutative polynomial rings was first introduced by Ore 1933, who combined earlier ideas of Hilbert (in the case \(\delta = 0 \)) and Schlessinger (in the case \(\sigma = 1 \)). We denote the Ore extension \(R[x; \sigma, \delta] \) by \(O(R) \). An ideal \(I \) of a ring \(R \) is called \(\sigma \)-invariant if \(\sigma(I) = I \) and is called \(\delta \)-invariant if \(\delta(I) \subseteq I \). If an ideal \(I \) of \(R \) is \(\sigma \)-invariant and \(\delta \)-invariant, then \(I[x; \sigma, \delta] \) is an ideal of \(O(R) \) and as usual we denote it by \(O(I) \).

Definition 1.2. A ring \(R \) is called 2-primal if and only if \(P(R) = N(R) \), where \(P(R) \) is the prime radical of \(R \) and \(N(R) \) is the set of nilpotent elements of \(R \) (a familiar property of commutative rings). Some of the fundamental properties of 2-primal rings are developed in [6], [12] and [13]. (N. B. The terminology is not uniform: 2-primal rings are called “N-rings” in [6], and, under an equivalent definition, called “weakly symmetric” in [13]).

An ideal \(I \) of a ring \(R \) is called completely semiprime if \(a^2 \in I \) implies \(a \in I \), where \(a \in R \).

Weak \(\sigma \)-rigid rings and IFP-rings:

Definition 1.3. (Kwak [8]). Let \(R \) be a ring and \(\sigma \) an endomorphism of \(R \). Then \(R \) is said to be a \(\sigma(*) \)-ring if \(a\sigma(a) \in P(R) \) implies \(a \in P(R) \) for \(a \in R \).

Example 1.4. Let \(R = \mathbb{Z}[\sqrt{-2}] \). Let \(\sigma : R \rightarrow R \) be an endomorphism defined by \(\sigma(a + b\sqrt{-2}) = a - b\sqrt{-2} \). Then \(R \) is a \(\sigma(*) \)-ring.

Ouyang in [10] introduced weak \(\sigma \)-rigid rings, where \(\sigma \) is an endomorphism of ring \(R \). These rings are related to 2-primal rings.

Definition 1.5. (Ouyang [10]). Let \(R \) be a ring and \(\sigma \) an endomorphism of \(R \) such that \(a\sigma(a) \in N(R) \) if and only if \(a \in N(R) \) for \(a \in R \). Then \(R \) is called a weak \(\sigma \)-rigid ring.
Example 1.6. Assume that $W_1[F]$ is the first Weyl algebra over a field F of characteristic zero. Then $W_1[F] = F[\mu, \lambda]$, the polynomial ring with indeterminates μ and λ with $\lambda \mu = \mu \lambda + 1$. Now let R be the ring \(\begin{pmatrix} W_1[F] & W_1[F] \\ 0 & W_1[F] \end{pmatrix} \). Consider the following element in R: \(\begin{pmatrix} \mu \lambda & 0 \\ 0 & 0 \end{pmatrix} \). Now the prime radical $P(R)$ of R is \(\begin{pmatrix} 0 & W_1[F] \\ 0 & 0 \end{pmatrix} \). Define an endomorphism $\sigma : R \to R$ by $\sigma(\begin{pmatrix} \mu \lambda & 0 \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} \mu & 0 \\ 0 & 0 \end{pmatrix}$. Then R is a weak σ-rigid ring.

Definition 1.7. (Shin [12]). Let R be a ring. Then R is called an IFP-ring (or Ring with Insert Factory Property) if for $a, b \in R$, $ab = 0$ implies $aRb = 0$. Also known as IFP-ring.

Example 1.8. (1) Let $R = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}; a, b \in \mathbb{Z} \right\}$. The only matrices A and B satisfying $AB = 0$ are of the type \(\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \); $a, b \in \mathbb{Z}$. i.e., $A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}$.

Now for all $K = \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \in R$, $AB = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ implies $AKB = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}$

\[= \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \]

\[= \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & db \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \]

This implies R is an IFP-ring.

(2) Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}; a, b \in \mathbb{Z} \right\}$. Then the only matrices A and B satisfying $AB = 0$ are of the type $A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}$; $a, b \in \mathbb{Z}$.

Now let a, b, c and $d \neq 0$ then for all $K = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} \in R$
A note on prime ideals of IFP-rings and their extensions

\[AB = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]

But \[AKB = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \]
\[= \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \]
\[= \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & db \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & adb \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]

This implies \(R \) is not an IFP-ring.

(3) (Example (5.3) of [12]). Let \(F = \mathbb{Z}_2(y) \) be the field of rational functions over \(\mathbb{Z}_2 \) with \(y \) an indeterminate. Consider the ring \(R = \{ f(x) \in F[x] \mid xy + yx = 1 \} \). Then clearly \(R \) is a domain, so it is reduced and hence an IFP-ring.

Reduced rings (i.e., rings without nonzero nilpotent elements) are obviously IFP-rings, right (left) duo rings are IFP-rings by ([12], Lemma 1.2). Shin showed that IFP-rings are 2-primal in ([12], Theorem 1.5), and so reduced rings are 2-primal.

Lemma 1.9. Let \(R \) be a ring. Let \(\sigma \) be an automorphism of \(R \).
1. If \(P \) is a prime ideal of \(S(R) \) such that \(x \notin P \), then \(P \cap R \) is a prime ideal of \(R \) and \(\sigma(P \cap R) = P \cap R \).
2. If \(Q \) is a prime ideal of \(R \) such that \(\sigma(Q) = Q \), then \(S(Q) \) is a prime ideal of \(S(R) \) and \(S(Q) \cap R = Q \).

Proof. The proof follows on the same lines as in Lemma (10.6.4) of [9]. □

Theorem 1.10. Let \(R \) be a Noetherian ring. Let \(\sigma \) be an automorphism of \(R \) such that \(R \) is a \(\sigma(\ast) \)-ring. Then \(R \) is a weak \(\sigma \)-rigid ring. Conversely a 2-primal weak \(\sigma \)-rigid ring is a \(\sigma(\ast) \)-ring.

Proof. See Theorem (5) of [2]. □

Theorem 1.11. Let \(R \) be a right Noetherian \(\mathbb{Q} \)-algebra. Let \(\sigma \) be an automorphism and \(\delta \) be a \(\sigma \)-derivation of \(R \) such that \(\sigma(\delta(a)) = \delta(\sigma(a)) \) for all \(a \in R \). Then \(e^{\delta} \) is an automorphism of \(T = R[[t; \delta]] \), the skew power series ring.

Proof. The proof is on the same lines as in [11] and in the non-commutative case on the same lines as in [4]. Hence forth we denote \(R[[t; \delta]] \) by \(T \). Let \(\sigma \) be an automorphism of a ring \(R \), and \(I \) be an ideal of \(R \) such that \(\sigma(I) = I \). Then it is easy to see that \(TI \subseteq IT \) and \(IT \subseteq TI \). Hence \(TI = IT \) is an ideal of \(T \).
Lemma 1.12. Let R be a right Noetherian \mathbb{Q}-algebra. Let σ be an automorphism and δ be a σ-derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$ for all $a \in R$. Let I be an ideal of R such that $\sigma(I) = I$. Then I is δ-invariant if and only if IT is δ^{14}-invariant.

Proof. See Lemma (2.5) of [3]. □

Proposition 1.13. Let R be a ring and T as usual. Then:

(1) $P \in \text{MinSpec}(T)$ implies that $P \cap R \in \text{MinSpec}(R)$ and $P = (P \cap R)T$.

(2) $U \in \text{MinSpec}(R)$ with $\sigma(U) = U$ implies that $UT \in \text{MinSpec}(T)$.

Proof. See Lemma (2.5) of [1]. □

2 Main Results

Proposition 2.1. Let R be a ring. Then R is an IFP-ring implies that $P(R)$ is completely semiprime.

Proof. Since R is an IFP-ring. So, by Proposition (1.5) of [12] R is 2-primal implies that $P(R)$ is completely semiprime. □

Proposition 2.2. Let R be a right Noetherian IFP-ring which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R such that R is a weak σ-rigid ring and δ a σ-derivation of R. Then $\sigma(U) = U$ and $\delta(U) \subseteq U$ for all $U \in \text{MinSpec}(R)$.

Proof. Let $U \in \text{MinSpec}(R)$. Since $P(R)$ is completely semiprime by Proposition (2.1). So by Proposition (2.1) of [3] we have $\sigma(U) = U$. Now let $T = \{a \in U \mid \text{such that } \delta^k(a) \in U \text{ for all integers } k \geq 1\}$. Then T is a δ-invariant ideal of R. Hence it is easy to show that $\delta(U) \subseteq U$ by Proposition (2.1) of [3]. □

Lemma 2.3. Let R be a right Noetherian IFP-ring which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R such that R is a weak σ-rigid ring and δ a σ-derivation of R. Then

(1) If U is a minimal prime ideal of R, then $O(U)$ is a minimal prime ideal of $O(R)$ and $O(U) \cap R = U$.

(2) If P is a minimal prime ideal of $O(R)$, then $P \cap R$ is a minimal prime ideal of R.

Proof. Since every IFP-ring is 2-primal and a 2-primal weak σ-rigid ring is $\sigma(*)$-ring by Theorem (1.10). Rest is obvious by using Lemma (2.2) of [3]. □
Theorem 2.4. Let R be a right Noetherian IFP-ring, which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R such that R is a weak σ-rigid ring and δ be a σ-derivation of R. Then $P \in \text{Ass}(O(R)O(R))$ if and only if there exists $U \in \text{Ass}(R_R)$ such that $O(P \cap R) = P$ and $P \cap R = U$.

Proof. The proof follows on the same lines as in Theorem (A) of [3]. We give a sketch.

R being right Noetherian implies that $\text{Ass}(R_R) = \mathcal{A}(R)$. Now R is a weak σ-rigid IFP ring, therefore, Proposition (2.2) implies that $\sigma(U) = U$ and $\delta(U) \subseteq U$ for all $U \in \text{MinSpec}(R)$. So $O(U)$ is an ideal of $O(R)$. Now $fU = 0$. Therefore $fO(R)U \subseteq fUO(R) = 0$, i.e. $U \subseteq P \cap R$. But it is clear that $P \cap R \subseteq U$. Thus $P \cap R = U$.

Conversely let $U = \text{Ann}(cR) = \text{Assas}(cR)$, $c \in R$ and R is right Noetherian implies that $\text{Ass}(R_R) = \mathcal{A}(R)$. Now it can be easily seen that $O(U) = \text{Ann}(chO(R))$ for all $h \in O(R)$. Therefore $O(U) = \text{Ann}(cO(R)) = \text{Assas}(cO(R))$. □

References

